Evaluation of modified adaptive k-means segmentation algorithm

被引:1
|
作者
Taye Girma Debelee [1 ,2 ]
Friedhelm Schwenker [1 ]
Samuel Rahimeto [2 ]
Dereje Yohannes [2 ]
机构
[1] Institute of Neural Information Processing, Ulm University
[2] Addis Ababa Science and Technology University
关键词
clustering; modified adaptive k-means(MAKM); segmentation; Q-value;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Segmentation is the act of partitioning an image into different regions by creating boundaries between regions. k-means image segmentation is the simplest prevalent approach. However, the segmentation quality is contingent on the initial parameters(the cluster centers and their number). In this paper, a convolution-based modified adaptive k-means(MAKM)approach is proposed and evaluated using images collected from different sources(MATLAB, Berkeley image database, VOC2012, BGH, MIAS, and MRI).The evaluation shows that the proposed algorithm is superior to k-means++, fuzzy c-means, histogrambased k-means, and subtractive k-means algorithms in terms of image segmentation quality(Q-value),computational cost, and RMSE. The proposed algorithm was also compared to state-of-the-art learning-based methods in terms of IoU and MIoU; it achieved a higher MIoU value.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 50 条
  • [1] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    [J]. Computational Visual Media, 2019, 5 : 347 - 361
  • [2] Evaluation of modified adaptive k-means segmentation algorithm
    Debelee, Taye Girma
    Schwenker, Friedhelm
    Rahimeto, Samuel
    Yohannes, Dereje
    [J]. COMPUTATIONAL VISUAL MEDIA, 2019, 5 (04) : 347 - 361
  • [3] Image segmentation based on adaptive K-means algorithm
    Xin Zheng
    Qinyi Lei
    Run Yao
    Yifei Gong
    Qian Yin
    [J]. EURASIP Journal on Image and Video Processing, 2018
  • [4] Image segmentation based on adaptive K-means algorithm
    Zheng, Xin
    Lei, Qinyi
    Yao, Run
    Gong, Yifei
    Yin, Qian
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [5] Multiresolution adaptive K-means algorithm for segmentation of brain MRI
    Vemuri, BC
    Rahman, S
    Li, J
    [J]. IMAGE ANALYSIS APPLICATIONS AND COMPUTER GRAPHICS, 1995, 1024 : 347 - 354
  • [6] A Modified K-means Algorithm - Two-Layer K-means Algorithm
    Liu, Chen-Chung
    Chu, Shao-Wei
    Chan, Yung-Kuan
    Yu, Shyr-Shen
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, : 447 - 450
  • [7] Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation
    Isa, Nor Ashidi Mat
    Salamah, Samy A.
    Ngah, Umi Kalthum
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (04) : 2145 - 2153
  • [8] Adaptive k-means clustering algorithm for MR breast image segmentation
    Hossam M. Moftah
    Ahmad Taher Azar
    Eiman Tamah Al-Shammari
    Neveen I. Ghali
    Aboul Ella Hassanien
    Mahmoud Shoman
    [J]. Neural Computing and Applications, 2014, 24 : 1917 - 1928
  • [9] Fast Adaptive Depth Estimation Algorithm Based on K-means Segmentation
    Dong, Xin
    Wang, Guozhong
    Fan, Tao
    Li, Guoping
    Zhao, Haiwu
    Teng, Guowei
    [J]. PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA TECHNOLOGY (ICMT-13), 2013, 84 : 1784 - 1791
  • [10] Adaptive k-means clustering algorithm for MR breast image segmentation
    Moftah, Hossam M.
    Azar, Ahmad Taher
    Al-Shammari, Eiman Tamah
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Shoman, Mahmoud
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8): : 1917 - 1928