Image segmentation based on adaptive K-means algorithm

被引:92
|
作者
Zheng, Xin [1 ]
Lei, Qinyi [1 ]
Yao, Run [1 ]
Gong, Yifei [1 ]
Yin, Qian [1 ]
机构
[1] Beijing Normal Univ, Image Proc & Pattern Recognit Lab, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Image segmentation; Adaptive K-means; Clustering analysis;
D O I
10.1186/s13640-018-0309-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation is an important preprocessing operation in image recognition and computer vision. This paper proposes an adaptive K-means image segmentation method, which generates accurate segmentation results with simple operation and avoids the interactive input of K value. This method transforms the color space of images into LAB color space firstly. And the value of luminance components is set to a particular value, in order to reduce the effect of light on image segmentation. Then, the equivalent relation between K values and the number of connected domains after setting threshold is used to segment the image adaptively. After morphological processing, maximum connected domain extraction and matching with the original image, the final segmentation results are obtained. Experiments proof that the method proposed in this paper is not only simple but also accurate and effective.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Image segmentation based on adaptive K-means algorithm
    Xin Zheng
    Qinyi Lei
    Run Yao
    Yifei Gong
    Qian Yin
    EURASIP Journal on Image and Video Processing, 2018
  • [2] Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation
    Isa, Nor Ashidi Mat
    Salamah, Samy A.
    Ngah, Umi Kalthum
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (04) : 2145 - 2153
  • [3] Adaptive k-means clustering algorithm for MR breast image segmentation
    Hossam M. Moftah
    Ahmad Taher Azar
    Eiman Tamah Al-Shammari
    Neveen I. Ghali
    Aboul Ella Hassanien
    Mahmoud Shoman
    Neural Computing and Applications, 2014, 24 : 1917 - 1928
  • [4] Adaptive k-means clustering algorithm for MR breast image segmentation
    Moftah, Hossam M.
    Azar, Ahmad Taher
    Al-Shammari, Eiman Tamah
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Shoman, Mahmoud
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8): : 1917 - 1928
  • [5] Adaptive K-means clustering for color image segmentation
    Yong Z.
    Shi H.
    Advances in Information Sciences and Service Sciences, 2011, 3 (10): : 216 - 223
  • [6] Fast Adaptive Depth Estimation Algorithm Based on K-means Segmentation
    Dong, Xin
    Wang, Guozhong
    Fan, Tao
    Li, Guoping
    Zhao, Haiwu
    Teng, Guowei
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA TECHNOLOGY (ICMT-13), 2013, 84 : 1784 - 1791
  • [7] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    Computational Visual Media, 2019, 5 (04) : 347 - 361
  • [8] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    Computational Visual Media, 2019, 5 : 347 - 361
  • [9] Evaluation of modified adaptive k-means segmentation algorithm
    Debelee, Taye Girma
    Schwenker, Friedhelm
    Rahimeto, Samuel
    Yohannes, Dereje
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (04) : 347 - 361
  • [10] A volume segmentation algorithm for medical image based on K-means clustering
    Li Xinwu
    2008 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2008, : 881 - 884