A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor

被引:266
|
作者
Zhao, Li [1 ,2 ]
Ren, Zhijun [1 ,2 ]
Liu, Xiong [1 ,2 ]
Ling, Qiangjun [1 ,2 ]
Li, Zhengjun [2 ]
Gu, Haibin [1 ,2 ]
机构
[1] Sichuan Univ, Key Lab Leather Chem & Engn, Minist Educ, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Natl Engn Res Ctr Clean Technol Leather Ind, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
conductive hydrogel; self-healing; self-adhesiveness; responsiveness; strain sensor;
D O I
10.1021/acsami.1c01343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogel-based wearable devices have attracted tremendous interest due to their potential applications in electronic skins, soft robotics, and sensors. However, it is still a challenge for hydrogel-based wearable devices to be integrated with high conductivity, a self-healing ability, remoldability, self-adhesiveness, good mechanical strength and high stretchability, good biocompatibility, and stimulus-responsiveness. Herein, multi-functional conductive composite hydrogels were fabricated by a simple one-pot method based on poly(vinyl alcohol) (PVA), sodium alginate (SA), and tannic acid (TA) using borax as a cross-linker. The composite hydrogel network was built by borate ester bonds and hydrogen bonds. The obtained hydrogel exhibited pH- and sugar-responsiveness, high stretchability (780% strain), and fast self-healing performance with healing efficiency (HE) as high as 93.56% without any external stimulus. Additionally, the hydrogel displayed considerable conductive behavior and stable changes of resistance with high sensitivity (gauge factor (GF) = 15.98 at a strain of 780%). The hydrogel was further applied as a strain sensor for monitoring large and tiny human motions with durable stability. Significantly, the healed hydrogel also showed good sensing behavior. This work broadens the avenue for the design and preparation of biocompatible polymer-based hydrogels to promote the application of hydrogel sensors with comfortable wearing feel and high sensitivity.
引用
收藏
页码:11344 / 11355
页数:12
相关论文
共 50 条
  • [11] Self-adhesive, self-healing, conductive organogel strain sensors with extreme temperature tolerance
    Dai, Tianyi
    Wang, Jing
    Wu, Hao
    Lin, Yankun
    Zhang, Xumin
    Ye, Mingyu
    Wang, Jingyi
    Jia, Hongbing
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (41) : 15532 - 15540
  • [12] Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/ wearable electronics based on triboelectric and piezoresistive sensor
    Qiu, Chuang
    He, Ming
    Xu, Shi-feng
    Ali, Aasi Mohammad
    Shen, Lin
    Wang, Jia-shi
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 269
  • [13] Bio-based, self-adhesive, and self-healing ionogel with excellent mechanical properties for flexible strain sensor
    Zhang, Yipeng
    Xu, Junhuai
    Wang, Haibo
    [J]. RSC ADVANCES, 2021, 11 (59) : 37661 - 37666
  • [14] Transparent, stretchable, self-healing, and self-adhesive ionogels for flexible multifunctional sensors and encryption systems
    Zhou, Yang
    Wang, Lulu
    Liu, Yinping
    Luo, Xiaohang
    He, Yiqi
    Niu, Yingchun
    Xu, Quan
    [J]. Chemical Engineering Journal, 1600, 484
  • [15] Transparent, stretchable, self-healing, and self-adhesive ionogels for flexible multifunctional sensors and encryption systems
    Zhou, Yang
    Wang, Lulu
    Liu, Yinping
    Luo, Xiaohang
    He, Yiqi
    Niu, Yingchun
    Xu, Quan
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [16] Self-Adhesive, Antifreezing, and Antidrying Conductive Glycerin/Polyacrylamide/Chitosan Quaternary Ammonium Salt Composite Hydrogel as a Flexible Strain Sensor
    Liu, Song
    Wan, Li
    Hu, Feifan
    Wen, Zhiwei
    Cao, Ming
    Ai, Fanrong
    [J]. ACS APPLIED POLYMER MATERIALS, 2023, 6 (01) : 1055 - 1065
  • [17] A double-dynamic-bond crosslinked multifunctional conductive hydrogel with self-adhesive, remoldability, and rapid self-healing properties for wearable sensing
    Li, Xinfeng
    Zhang, Tianyi
    Song, Baiqing
    Yang, Kaili
    Hao, Xiaoqiong
    Ma, Jianhua
    [J]. POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (01)
  • [18] Mussel-inspired PDA@PEDOT nanocomposite hydrogel with excellent mechanical strength, self-adhesive, and self-healing properties for a flexible strain sensor
    Li, Xiaoyi
    Zhao, Xueshan
    Liu, Ruiqi
    Wang, Hui
    Wang, Shuang
    Fan, Bing
    Hu, Chenggong
    Wang, Haibo
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (12) : 3092 - 3102
  • [19] A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
    Wang, Man
    Chen, Yujie
    Khan, Rajwali
    Liu, Hezhou
    Chen, Chi
    Chen, Tao
    Zhang, Runjing
    Li, Hua
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 567 : 139 - 149
  • [20] Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels
    Li, Ruirui
    Ren, Jie
    Zhang, Minmin
    Li, Meng
    Li, Yan
    Yang, Wu
    [J]. BIOMACROMOLECULES, 2024, 25 (02) : 614 - 625