Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels

被引:5
|
作者
Li, Ruirui [1 ]
Ren, Jie [1 ]
Zhang, Minmin [1 ]
Li, Meng [1 ]
Li, Yan [1 ]
Yang, Wu [1 ]
机构
[1] Northwest Normal Univ, Chem & Chem Engn Coll, Key Lab Bioelectrochem & Environm Anal Gansu, Key Lab Polymer Mat,Minist Educ Ecol Environm, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
ANTIBACTERIAL;
D O I
10.1021/acs.biomac.3c00695
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conductive hydrogels integrate the conductive performance and soft nature, which is like that of human skin. Thus, they are more suitable for the preparation of wearable human-motion sensors. Nevertheless, the integration of outstanding multiple functionalities, such as stretchability, toughness, biocompatibility, self-healing, adhesion, strain sensitivity, and durability, by a simple way is still a huge challenge. Herein, we have developed a multifunctional chitosan/oxidized hyaluronic acid/hydroxypropyl methylcellulose/poly(acrylic acid)/tannic acid/Al3+ hydrogel (CS/OHA/HPMC/PAA/TA/Al3+) by using a two-step method with hydroxypropyl methylcellulose (HPMC), acrylic acid (AA), tannic acid (TA), chitosan (CS), oxidized hyaluronic acid (OHA), and aluminum chloride hexahydrate (AlCl3<middle dot>6H(2)O). Due to the synergistic effect of dynamic imine bonds between CS and OHA, dynamic metal coordination bonds between Al3+ and -COOH and/or TA as well as reversible hydrogen, the hydrogel showed excellent tensile property (elongation at break of 3168%) and desirable toughness (0.79 MJ/m(3)). The mechanical self-healing efficiency can reach 95.5% at 30 min, and the conductivity can recover in 5.2 s at room temperature without stimulation. The favorable attribute of high transparency (98.5% transmittance) facilitates the transmission of the optical signal and enables visualization of the sensor. It also shows good adhesiveness to various materials and is easy to peel off without residue. The resistance of the hydrogel-based sensors shows good electrical conductivity (2.33 S m(-1)), good durability, high sensing sensitivity (GF value of 4.12 under 1600% strain), low detection limit (less than 1%), and short response/recovery time (0.54/0.31 s). It adhered to human skin and monitored human movements such as the bending movements of joints, swallowing, and speaking successfully. Therefore, the obtained multifunctional conductive hydrogel has great potential applications in wearable strain sensors.
引用
下载
收藏
页码:614 / 625
页数:12
相关论文
共 50 条
  • [1] Ultra-stretchable, fast self-healing, adhesive, and strain-sensitive wearable sensors based on ionic conductive hydrogels
    Ren, Jie
    Zhang, Wenjing
    Li, Ruirui
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (26) : 11705 - 11716
  • [2] A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel
    Yin, Jianyu
    Pan, Shenxin
    Wu, Lili
    Tan, Liyina
    Chen, Di
    Huang, Shan
    Zhang, Yuhong
    He, Peixin
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (48) : 17349 - 17364
  • [3] Self-healing, highly stretchable and self-adhesive hydrogels
    Xu, Xiubin
    Wu, Xu
    Wang, Zhengping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [4] Highly Conductive, Stretchable, Adhesive, and Self-Healing Polymer Hydrogels for Strain and Pressure Sensor
    Yang, Chunying
    Yin, Jialin
    Chen, Zhuo
    Du, Haishun
    Tian, Minghua
    Zhang, Miaomiao
    Zheng, Jinxin
    Ding, Lan
    Zhang, Pengfei
    Zhang, Xinyu
    Deng, Kuilin
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (12)
  • [5] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [6] Highly stretchable, self-healing, self-adhesive and conductive nanocomposite hydrogels based on multi-reversible interactions as multifunctional strain sensors
    Chen, Meijun
    Lei, Kun
    Guo, Pengshan
    Liu, Xin
    Zhao, Pengchao
    Han, Meng
    Cai, Bianyun
    Li, Guangda
    Li, Jinghua
    Cui, Jingqiang
    Wang, Xinling
    EUROPEAN POLYMER JOURNAL, 2023, 199
  • [7] Stretchable, self-adhesive, and conductive hemicellulose-based hydrogels as wearable strain sensors
    Zhao, Lihui
    Luo, Banxin
    Gao, Shishuai
    Liu, Yupeng
    Lai, Chenhuan
    Zhang, Daihui
    Guan, Wenxian
    Wang, Chunpeng
    Chu, Fuxiang
    International Journal of Biological Macromolecules, 2024, 282
  • [8] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Ji-Jun Wang
    Qiang Zhang
    Xing-Xiang Ji
    Li-Bin Liu
    Chinese Journal of Polymer Science, 2020, 38 : 1221 - 1229
  • [9] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Wang, Ji-Jun
    Zhang, Qiang
    Ji, Xing-Xiang
    Liu, Li-Bin
    CHINESE JOURNAL OF POLYMER SCIENCE, 2020, 38 (11) : 1221 - 1229
  • [10] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Ji-Jun Wang
    Qiang Zhang
    Xing-Xiang Ji
    Li-Bin Liu
    Chinese Journal of Polymer Science, 2020, (11) : 1221 - 1229