Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels

被引:5
|
作者
Li, Ruirui [1 ]
Ren, Jie [1 ]
Zhang, Minmin [1 ]
Li, Meng [1 ]
Li, Yan [1 ]
Yang, Wu [1 ]
机构
[1] Northwest Normal Univ, Chem & Chem Engn Coll, Key Lab Bioelectrochem & Environm Anal Gansu, Key Lab Polymer Mat,Minist Educ Ecol Environm, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
ANTIBACTERIAL;
D O I
10.1021/acs.biomac.3c00695
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conductive hydrogels integrate the conductive performance and soft nature, which is like that of human skin. Thus, they are more suitable for the preparation of wearable human-motion sensors. Nevertheless, the integration of outstanding multiple functionalities, such as stretchability, toughness, biocompatibility, self-healing, adhesion, strain sensitivity, and durability, by a simple way is still a huge challenge. Herein, we have developed a multifunctional chitosan/oxidized hyaluronic acid/hydroxypropyl methylcellulose/poly(acrylic acid)/tannic acid/Al3+ hydrogel (CS/OHA/HPMC/PAA/TA/Al3+) by using a two-step method with hydroxypropyl methylcellulose (HPMC), acrylic acid (AA), tannic acid (TA), chitosan (CS), oxidized hyaluronic acid (OHA), and aluminum chloride hexahydrate (AlCl3<middle dot>6H(2)O). Due to the synergistic effect of dynamic imine bonds between CS and OHA, dynamic metal coordination bonds between Al3+ and -COOH and/or TA as well as reversible hydrogen, the hydrogel showed excellent tensile property (elongation at break of 3168%) and desirable toughness (0.79 MJ/m(3)). The mechanical self-healing efficiency can reach 95.5% at 30 min, and the conductivity can recover in 5.2 s at room temperature without stimulation. The favorable attribute of high transparency (98.5% transmittance) facilitates the transmission of the optical signal and enables visualization of the sensor. It also shows good adhesiveness to various materials and is easy to peel off without residue. The resistance of the hydrogel-based sensors shows good electrical conductivity (2.33 S m(-1)), good durability, high sensing sensitivity (GF value of 4.12 under 1600% strain), low detection limit (less than 1%), and short response/recovery time (0.54/0.31 s). It adhered to human skin and monitored human movements such as the bending movements of joints, swallowing, and speaking successfully. Therefore, the obtained multifunctional conductive hydrogel has great potential applications in wearable strain sensors.
引用
下载
收藏
页码:614 / 625
页数:12
相关论文
共 50 条
  • [41] Highly Transparent, Self-Healing, and Self-Adhesive Double Network Hydrogel for Wearable Sensors
    Chen, Kai
    Liu, Mingxiang
    Wang, Feng
    Hu, Yunping
    Liu, Pei
    Li, Cong
    Du, Qianqian
    Yu, Yongsheng
    Xiao, Xiufeng
    Feng, Qian
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [42] Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
    Zhang, Jieyu
    Wu, Can
    Xu, Yuanyuan
    Chen, Jiali
    Ning, Ning
    Yang, Zeyu
    Guo, Yi
    Hu, Xuefeng
    Wang, Yunbing
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 40990 - 40999
  • [43] Super Stretchable, Self-Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor-Made Ionic Liquid for High-Performance Strain Sensors
    Yao, Xue
    Zhang, Sufeng
    Qian, Liwei
    Wei, Ning
    Nica, Valentin
    Coseri, Sergiu
    Han, Fei
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (33)
  • [44] Self-adhesive, self-healing, conductive organogel strain sensors with extreme temperature tolerance
    Dai, Tianyi
    Wang, Jing
    Wu, Hao
    Lin, Yankun
    Zhang, Xumin
    Ye, Mingyu
    Wang, Jingyi
    Jia, Hongbing
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (41) : 15532 - 15540
  • [45] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Chun-Xia Zhao
    Min Guo
    Jie Mao
    Yun-Tao Li
    Yuan-Peng Wu
    Hua Guo
    Dong Xiang
    Hui Li
    Chinese Journal of Polymer Science, 2023, 41 : 334 - 344
  • [46] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Chun-Xia Zhao
    Min Guo
    Jie Mao
    Yun-Tao Li
    Yuan-Peng Wu
    Hua Guo
    Dong Xiang
    Hui Li
    Chinese Journal of Polymer Science, 2023, 41 (03) : 334 - 344
  • [47] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Zhao, Chun-Xia
    Guo, Min
    Mao, Jie
    Li, Yun-Tao
    Wu, Yuan-Peng
    Guo, Hua
    Xiang, Dong
    Li, Hui
    CHINESE JOURNAL OF POLYMER SCIENCE, 2023, 41 (03) : 334 - 344
  • [48] Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor
    Fan, Kaiqi
    Wei, Wangchong
    Zhang, Zhiqiang
    Liu, Bo
    Feng, Wenbo
    Ma, Yongpeng
    Zhang, Xiaojing
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [49] Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors
    Zhang, Yi
    Liu, Han
    Wang, Ping
    Yu, Yuanyuan
    Zhou, Man
    Xu, Bo
    Cui, Li
    Wang, Qiang
    EUROPEAN POLYMER JOURNAL, 2023, 186