On the domination of random walk on a discrete cylinder by random interlacements

被引:16
|
作者
Sznitman, Alain-Sol [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
来源
关键词
disconnection; random walks; random interlacements; discrete cylinders; LOCAL-TIMES; VACANT SET;
D O I
10.1214/EJP.v14-679
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider simple random walk on a discrete cylinder with base a large d-dimensional torus of side-length N, when d >= 2. We develop a stochastic domination control on the local picture left by the random walk in boxes of side-length of order N(1-epsilon), with 0 < epsilon < 1, at certain random times comparable to N(2d), in terms of the trace left in a similar box of Z(d+1) by random interlacements at a suitably adjusted level. As an application we derive a lower bound on the disconnection time T(N) of the discrete cylinder, which as a by-product shows the tightness of the laws of N(2d)/T(N), for all d >= 2. This fact had previously only been established when d >= 17, in [3].
引用
收藏
页码:1670 / 1704
页数:35
相关论文
共 50 条
  • [41] Russo's Formula for Random Interlacements
    de Bernardini, Diego F.
    Popov, Serguei
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (02) : 321 - 335
  • [42] On large deviations and intersection of random interlacements
    Li, Xinyi
    Zhuang, Zijie
    BERNOULLI, 2024, 30 (03) : 2102 - 2126
  • [43] An Improved Decoupling Inequality for Random Interlacements
    de Bernardini, Diego F.
    Gallesco, Christophe
    Popov, Serguei
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (06) : 1216 - 1239
  • [44] RANDOM WALKS ON TORUS AND RANDOM INTERLACEMENTS: MACROSCOPIC COUPLING AND PHASE TRANSITION
    Cerny, Jeri
    Teixeira, Augusto
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (05): : 2883 - 2914
  • [45] Two-Dimensional Brownian Random Interlacements
    Comets, Francis
    Popov, Serguei
    POTENTIAL ANALYSIS, 2020, 53 (02) : 727 - 771
  • [46] Two-Dimensional Random Interlacements and Late Points for Random Walks
    Francis Comets
    Serguei Popov
    Marina Vachkovskaia
    Communications in Mathematical Physics, 2016, 343 : 129 - 164
  • [47] Random walk in random groups
    M. Gromov
    Geometric and Functional Analysis, 2003, 13 : 73 - 146
  • [48] Random walk in a discrete and continuous system with a thin membrane
    Kosztolowicz, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 298 (3-4) : 285 - 296
  • [49] Random walk and isoperimetry on discrete subgroups of Lie groups
    Pittet, C
    Saloff-Coste, L
    RANDOM WALKS AND DISCRETE POTENTIAL THEORY, 1999, 39 : 306 - 319
  • [50] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35