On the domination of random walk on a discrete cylinder by random interlacements

被引:16
|
作者
Sznitman, Alain-Sol [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
来源
关键词
disconnection; random walks; random interlacements; discrete cylinders; LOCAL-TIMES; VACANT SET;
D O I
10.1214/EJP.v14-679
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider simple random walk on a discrete cylinder with base a large d-dimensional torus of side-length N, when d >= 2. We develop a stochastic domination control on the local picture left by the random walk in boxes of side-length of order N(1-epsilon), with 0 < epsilon < 1, at certain random times comparable to N(2d), in terms of the trace left in a similar box of Z(d+1) by random interlacements at a suitably adjusted level. As an application we derive a lower bound on the disconnection time T(N) of the discrete cylinder, which as a by-product shows the tightness of the laws of N(2d)/T(N), for all d >= 2. This fact had previously only been established when d >= 17, in [3].
引用
收藏
页码:1670 / 1704
页数:35
相关论文
共 50 条
  • [31] Correlation effects in a discrete quantum random walk
    Stang, J. B.
    Rezakhani, A. T.
    Sanders, B. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (17)
  • [32] On the cost of the bubble set for random interlacements
    Alain-Sol Sznitman
    Inventiones mathematicae, 2023, 233 : 903 - 950
  • [33] An Improved Decoupling Inequality for Random Interlacements
    Diego F. de Bernardini
    Christophe Gallesco
    Serguei Popov
    Journal of Statistical Physics, 2019, 177 : 1216 - 1239
  • [34] On random random walk
    Roichman, Y
    ANNALS OF PROBABILITY, 1996, 24 (02): : 1001 - 1011
  • [35] Percolation for the Vacant Set of Random Interlacements
    Sidoravicius, Vladas
    Sznitman, Alain-Sol
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (06) : 831 - 858
  • [36] Directed random walk with random restarts: The Sisyphus random walk
    Montero, Miquel
    Villarroel, Javier
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [38] A lower bound for disconnection by random interlacements
    Li, Xinyi
    Sznitman, Alain-Sol
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 26
  • [39] RANDOM-WALK ON A RANDOM-WALK
    KEHR, KW
    KUTNER, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1982, 110 (03) : 535 - 549
  • [40] Russo’s Formula for Random Interlacements
    Diego F. de Bernardini
    Serguei Popov
    Journal of Statistical Physics, 2015, 160 : 321 - 335