Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images

被引:104
|
作者
Fang, Leyuan [1 ,2 ]
Li, Shutao [1 ]
Cunefare, David [2 ]
Farsiu, Sina [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
Denoising; image reconstruction; interpolation; layer segmentation; ophthalmic imaging; optical coherence tomography; retina; sparse representation; AUTOMATIC SEGMENTATION; MACULAR DEGENERATION; NOISE-REDUCTION; RETINAL LAYERS; OCT; CLASSIFICATION; REPRESENTATION; ACQUISITION; ENHANCEMENT; ALGORITHMS;
D O I
10.1109/TMI.2016.2611503
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We demonstrate the usefulness of utilizing a segmentation step for improving the performance of sparsity based image reconstruction algorithms. In specific, we will focus on retinal optical coherence tomography (OCT) reconstruction and propose a novel segmentation based reconstruction framework with sparse representation, termed segmentation based sparse reconstruction (SSR). The SSR method uses automatically segmented retinal layer information to construct layer-specific structural dictionaries. In addition, the SSR method efficiently exploits patch similarities within each segmented layer to enhance the reconstruction performance. Our experimental results on clinical-grade retinal OCT images demonstrate the effectiveness and efficiency of the proposed SSR method for both denoising and interpolation of OCT images.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [41] Validation of automated artificial intelligence segmentation of optical coherence tomography images
    Maloca, Peter M.
    Lee, Aaron Y.
    de Carvalho, Emanuel R.
    Okada, Mali
    Fasler, Katrin
    Leung, Irene
    Hormann, Beat
    Kaiser, Pascal
    Suter, Susanne
    Hasler, Pascal W.
    Zarranz-Ventura, Javier
    Egan, Catherine
    Heeren, Tjebo F. C.
    Balaskas, Konstantinos
    Tufail, Adnan
    Scholl, Hendrik P. N.
    [J]. PLOS ONE, 2019, 14 (08):
  • [42] Automatic Segmentation of Vessel Lumen in Intravascular Optical Coherence Tomography Images
    Wang, Ancong
    Tang, Xiaoying
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2016, : 948 - 953
  • [43] Reconstruction of stented coronary arteries from optical coherence tomography images: Feasibility, validation, and repeatability of a segmentation method
    Chiastra, Claudio
    Montin, Eros
    Bologna, Marco
    Migliori, Susanna
    Aurigemma, Cristina
    Burzotta, Francesco
    Celi, Simona
    Dubini, Gabriele
    Migliavacca, Francesco
    Mainardi, Luca
    [J]. PLOS ONE, 2017, 12 (06):
  • [44] Boundary segmentation based on modified random walks for vascular Doppler optical coherence tomography images
    Huang, Yong
    Wu, Chuanchao
    Xia, Shaoyan
    Liu, Lu
    Chen, Shanlin
    Tong, Dedi
    Ai, Danni
    Yang, Jian
    Wang, Yongtian
    [J]. CHINESE OPTICS LETTERS, 2019, 17 (05)
  • [45] Keeping it Clean: Artificial Intelligence Based Denoising Improves Segmentation of Optical Coherence Tomography Images
    Devalla, Sripad Krishna
    Tan Hung Pham
    Zhang, Liang
    Tin, Tun
    Mohan, Rajan
    Mohan, Sujatha
    Aung, Tin
    Schmetterer, Leopold
    Thiery, Alexandre H.
    Girard, Michael
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [46] Segmentation-Based Registration of Volumetric Images Acquired With Adaptive Optics Optical Coherence Tomography
    Lee, S.
    Kocaoglu, O. P.
    Wang, Q.
    Jonnal, R. S.
    Gao, W.
    Miller, D. T.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [47] A New Texture-Based Segmentation Method fc r Optical Coherence Tomography Images
    Monemian, Maryam
    Rabbani, Hossein
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 4750 - 4753
  • [49] Boundary segmentation based on modified random walks for vascular Doppler optical coherence tomography images
    黄勇
    吴传超
    夏绍燕
    刘路
    陈山林
    童德迪
    艾丹妮
    杨健
    王涌天
    [J]. Chinese Optics Letters, 2019, 17 (05) : 19 - 24
  • [50] Automatic choroidal segmentation in optical coherence tomography images based on curvelet transform and graph theory
    Eghtedar, Reza Alizadeh
    Esmaeili, Mahdad
    Peyman, Alireza
    Akhlaghi, Mohammadreza
    Rasta, Seyed Hossein
    [J]. JOURNAL OF MEDICAL SIGNALS & SENSORS, 2023, 13 (02): : 92 - 100