Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images

被引:107
|
作者
Fang, Leyuan [1 ,2 ]
Li, Shutao [1 ]
Cunefare, David [2 ]
Farsiu, Sina [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
Denoising; image reconstruction; interpolation; layer segmentation; ophthalmic imaging; optical coherence tomography; retina; sparse representation; AUTOMATIC SEGMENTATION; MACULAR DEGENERATION; NOISE-REDUCTION; RETINAL LAYERS; OCT; CLASSIFICATION; REPRESENTATION; ACQUISITION; ENHANCEMENT; ALGORITHMS;
D O I
10.1109/TMI.2016.2611503
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We demonstrate the usefulness of utilizing a segmentation step for improving the performance of sparsity based image reconstruction algorithms. In specific, we will focus on retinal optical coherence tomography (OCT) reconstruction and propose a novel segmentation based reconstruction framework with sparse representation, termed segmentation based sparse reconstruction (SSR). The SSR method uses automatically segmented retinal layer information to construct layer-specific structural dictionaries. In addition, the SSR method efficiently exploits patch similarities within each segmented layer to enhance the reconstruction performance. Our experimental results on clinical-grade retinal OCT images demonstrate the effectiveness and efficiency of the proposed SSR method for both denoising and interpolation of OCT images.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [21] Automated Segmentation of Retinoblastoma from Optical Coherence Tomography Images
    Pol, Nirmal
    Pandya, Bhadra
    Craig, Joshua
    Walter, Jane
    Kahrs, Lueder
    Mallipatna, Ashwin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [22] Novelty Detection-Based Internal Fingerprint Segmentation in Optical Coherence Tomography Images
    Khutlang, Rethabile
    Nelwamondo, Fulufhelo V.
    2014 SECOND INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2014, : 556 - 559
  • [23] Graph-based segmentation of corneal epithelium and endothelium in Optical Coherence Tomography images
    Elsawy, Amr
    Roongpoovapatr, Vatookarn
    Eleiwa, Taher Kamel
    Gregori, Giovanni
    Abdel-Mottaleb, Mohamed
    Abou Shousha, Mohamed
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [24] Deep Learning Based Method for Retinal Layer Segmentation In Optical Coherence Tomography Images
    Zadro, Ivana
    Loncaric, Sven
    Radmilovic, Marin
    Vatavuk, Zoran
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [25] Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema
    Chiu, Stephanie J.
    Allingham, Michael J.
    Mettu, Priyatham S.
    Cousins, Scott W.
    Izatt, Joseph A.
    Farsiu, Sina
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (04): : 1172 - 1194
  • [26] Fast detection and segmentation of drusen in retinal optical coherence tomography images
    Farsiu, Sina
    Chiu, Stephanie J.
    Izatt, Joseph A.
    Toth, Cynthia A.
    OPHTHALMIC TECHNOLOGIES XVIII, 2008, 6844
  • [27] Variability of manual ciliary muscle segmentation in optical coherence tomography images
    Chang, Yu-Cherng
    Liu, Keke
    Cabot, Florence
    Yoo, Sonia H.
    Ruggeri, Marco
    Ho, Arthur
    Parel, Jean-Marie
    Manns, Fabrice
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (02): : 791 - 800
  • [28] A Study on Automated Segmentation of Retinal Layers in Optical Coherence Tomography Images
    Ngo, Lua
    Yih, Geown
    Ji, Seungbae
    Han, Jae-Ho
    2016 4TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2016,
  • [29] Automatic vessel lumen segmentation in optical coherence tomography (OCT) images
    Zhang, Huaizhong
    Essa, Ehab
    Xie, Xianghua
    APPLIED SOFT COMPUTING, 2020, 88
  • [30] Needle Segmentation in Volumetric Optical Coherence Tomography Images for Ophthalmic Microsurgery
    Zhou, Mingchuan
    Roodaki, Hessam
    Eslami, Abouzar
    Chen, Guang
    Huang, Kai
    Maier, Mathias
    Lohmann, Chris P.
    Knoll, Alois
    Nasseri, Mohammad Ali
    APPLIED SCIENCES-BASEL, 2017, 7 (08):