3D electron backscatter diffraction study of a lath morphology in additively manufactured Ti-6Al-4V

被引:28
|
作者
DeMott, Ryan [1 ]
Collins, Peter [2 ]
Kong, Charlie [3 ]
Liao, Xiaozhou [4 ]
Ringer, Simon [4 ]
Primig, Sophie [1 ]
机构
[1] UNSW Sydney, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[3] UNSW Sydney, Electron Microscope Unit, Sydney, NSW 2052, Australia
[4] Univ Sydney, Australian Ctr Microscopy & Microanal, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Titanium alloys; Electron beam methods; 3D reconstruction; electron backscattering diffraction (EBSD); 3D-EBSD; Additive manufacturing; GRAIN-BOUNDARY-ALPHA; VARIANT SELECTION; EQUILIBRIUM SHAPE; TITANIUM-ALLOY; BETA-PHASE; BEAM; MICROSTRUCTURES; WIDMANSTATTEN; TEXTURE; NUCLEI;
D O I
10.1016/j.ultramic.2020.113073
中图分类号
TH742 [显微镜];
学科分类号
摘要
Titanium alloys exhibit complex, multi-phase microstructures which form during liquid-solid and solid-solid phase transformations. These phase transformations govern the microstructural evolution and are potentially more complex during additive manufacturing due to large thermal gradients and inhomogeneities. The prototypical fundamental unit of titanium microstructures are the a laths, and investigations into their three-dimensional morphology may provide new insights. A prior beta-grain boundary, 3-variant clusters and interconnected laths were studied in 3D in electron-beam printed Ti-6Al-4V using a plasma FIB. These key features are of interest for studying variant selection in additive manufacturing.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Examination of the twinning activity in additively manufactured Ti-6Al-4V
    Zhong, H. Z.
    Zhang, X. Y.
    Wang, S. X.
    Gu, J. F.
    MATERIALS & DESIGN, 2018, 144 : 14 - 24
  • [22] On the damping and fatigue characterization of additively manufactured Ti-6Al-4V
    Wilson, Peyton J.
    Azizian-Farsani, Elaheh
    Paul, Mikyle
    Khonsari, Michael M.
    Shao, Shuai
    Shamsaei, Nima
    ADDITIVE MANUFACTURING LETTERS, 2024, 11
  • [23] Machining of gtaw additively manufactured Ti-6Al-4V structures
    Palanisamy, S. (spalanisamy@swin.edu.au), 1600, Springer London (99): : 1 - 4
  • [24] Machining of GTAW additively manufactured Ti-6Al-4V structures
    N. Hoye
    D. Cuiuri
    R. A. Rahman Rashid
    S. Palanisamy
    The International Journal of Advanced Manufacturing Technology, 2018, 99 : 313 - 326
  • [25] Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting
    Lu, S. L.
    Qian, M.
    Tang, H. P.
    Yan, M.
    Wang, J.
    StJohn, D. H.
    ACTA MATERIALIA, 2016, 104 : 303 - 311
  • [26] Microstructure and Mechanical Properties of Ti-6Al-4V Additively Manufactured by Electron Beam Melting with 3D Part Nesting and Powder Reuse Influences
    Wanjara, Priti
    Backman, David
    Sikan, Fatih
    Gholipour, Javad
    Amos, Robert
    Patnaik, Prakash
    Brochu, Mathieu
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (01):
  • [27] Additively manufactured Ti-6Al-4V replacement parts for military aircraft
    Jones, R.
    Raman, R. K. Singh
    Iliopoulos, A. P.
    Michopoulos, J. G.
    Phan, N.
    Peng, D.
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 124 : 227 - 235
  • [28] Fracture toughness characteristics of additively manufactured Ti-6Al-4V lattices
    Daynes, Stephen
    Lifton, Joseph
    Lu, Wen Feng
    Wei, Jun
    Feih, Stefanie
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 86
  • [29] Fatigue Assessment of Wire and Arc Additively Manufactured Ti-6Al-4V
    Springer, Sebastian
    Leitner, Martin
    Gruber, Thomas
    Oberwinkler, Bernd
    Lasnik, Michael
    Grun, Florian
    METALS, 2022, 12 (05)
  • [30] Electro-strengthening of the additively manufactured Ti-6Al-4V alloy
    Waryoba, Daudi
    Islam, Zahabul
    Reutzel, Ted
    Haque, Aman
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 798