A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

被引:25
|
作者
Yan, Feifei
Liu, Yuanyuan
Chen, Haiping
Zhang, Fuhua
Zheng, Lulu
Hu, Qingxi
机构
[1] Baoshan District, Shanghai 200444
基金
中国国家自然科学基金;
关键词
DESIGN;
D O I
10.1063/1.4867959
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering. (C) 2014 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [42] 3D printing of PLGA scaffolds for tissue engineering
    Mironov, Anton V.
    Grigoryev, Aleksey M.
    Krotova, Larisa I.
    Skaletsky, Nikolaj N.
    Popov, Vladimir K.
    Sevastianov, Viktor I.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 104 - 109
  • [43] 3D Printing of Bioceramics for Bone Tissue Engineering
    Zafar, Muhammad Jamshaid
    Zhu, Dongbin
    Zhang, Zhengyan
    MATERIALS, 2019, 12 (20)
  • [44] 3D Printing of Microspheres for Tissue Engineering Scaffolds
    Lohfeld, S.
    Salash, J. R.
    McHugh, P. E.
    Detamore, M. S.
    TISSUE ENGINEERING PART A, 2015, 21 : S340 - S340
  • [45] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [46] Application of 3D printing in bone tissue engineering
    Bose, Susmita
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [47] 3D printing of functional biomaterials for tissue engineering
    Zhu, Wei
    Ma, Xuanyi
    Gou, Maling
    Mei, Deqing
    Zhang, Kang
    Chen, Shaochen
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 40 : 103 - 112
  • [48] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [49] 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering
    Jang, Tae-Sik
    Jung, Hyun-Do
    Pan, Houwen Matthew
    Han, Win Tun
    Chen, Shengyang
    Song, Juha
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (01)
  • [50] Development Of Scaffold-Free Trachea Tissue Engineering Using Bio 3d Printing System
    Matsumoto, K.
    Machino, R.
    Taniguchi, D.
    Takeoka, Y.
    Taura, Y.
    Yamasaki, N.
    Tsuchiya, T.
    Miyazaki, T.
    Hatachi, G.
    Kitamura, Y.
    Nagayasu, T.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193