A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

被引:25
|
作者
Yan, Feifei
Liu, Yuanyuan
Chen, Haiping
Zhang, Fuhua
Zheng, Lulu
Hu, Qingxi
机构
[1] Baoshan District, Shanghai 200444
基金
中国国家自然科学基金;
关键词
DESIGN;
D O I
10.1063/1.4867959
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering. (C) 2014 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Bio 3D printing for tissue engineering
    Park, Chan Hum
    TISSUE ENGINEERING PART A, 2022, 28 : 120 - 120
  • [22] 3D PRINTING TECHNOLOGIES FOR TISSUE ENGINEERING
    Lin, Weibin
    Peng, Qingjin
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2014, VOL 4, 2014,
  • [23] 3D Printing for Tissue Engineering Applications
    Hacioglu, Askican
    Yilmazer, Hakan
    Ustundag, Cem Bulent
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2018, 21 (01): : 221 - 227
  • [24] Advances in 3D Printing for Tissue Engineering
    Zaszczynska, Angelika
    Moczulska-Heljak, Maryla
    Gradys, Arkadiusz
    Sajkiewicz, Pawel
    MATERIALS, 2021, 14 (12)
  • [25] 3D printing for tissue engineering in otolaryngology
    Di Gesu, Roberto
    Acharya, Abhinav P.
    Jacobs, Ian
    Gottardi, Riccardo
    CONNECTIVE TISSUE RESEARCH, 2020, 61 (02) : 117 - 136
  • [26] Cryogenic 3D printing for tissue engineering
    Adamkiewicz, Michal
    Rubinsky, Boris
    CRYOBIOLOGY, 2015, 71 (03) : 518 - 521
  • [27] A Bio-Based Resin for a Multi-Scale Optical 3D Printing
    Skliutas, Edvinas
    Lebedevaite, Migle
    Kasetaite, Sigita
    Rekstyte, Sima
    Lileikis, Saulius
    Ostrauskaite, Jolita
    Malinauskas, Mangirdas
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [28] A Bio-Based Resin for a Multi-Scale Optical 3D Printing
    Edvinas Skliutas
    Migle Lebedevaite
    Sigita Kasetaite
    Sima Rekštytė
    Saulius Lileikis
    Jolita Ostrauskaite
    Mangirdas Malinauskas
    Scientific Reports, 10
  • [29] 3D Bioprinting Technology in Tissue Engineering Printing Method and Material Selection
    Tao, He
    Zhang, Xueyuan
    Yuan, Ximin
    Lian, Zhiqing
    Xu, Jie
    Shan, Debin
    Guo, Bin
    BIONANOSCIENCE, 2025, 15 (01)
  • [30] 3D printing technology and its combination with nanotechnology in bone tissue engineering
    Wu, Yuezhou
    Ji, Yucheng
    Lyu, Zhuocheng
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (03) : 451 - 464