FULLY COMPUTABLE ERROR BOUNDS FOR EIGENVALUE PROBLEM

被引:0
|
作者
Hong, Qichen [1 ,2 ]
Xie, Hehu [1 ,2 ]
Yue, Meiling [1 ,2 ]
Zhang, Ning [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Eigenvalue problem; computable error estimate; guaranteed upper bound; guaranteed lower bound; complementary method; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the computable error estimates for the eigenvalue problem which is solved by the general conforming finite element methods on the general meshes. Based on the computable error estimate, we can give an asymptotically lower bound of the general eigenvalues. hirthermore, we also give a guaranteed upper bound of the error estimates for the first eigenfunction approximation and a guaranteed lower bound of the first eigenvalue based on computable error estimator. Some numerical examples are presented to validate the theoretical results deduced in this paper.
引用
下载
收藏
页码:260 / 276
页数:17
相关论文
共 50 条
  • [21] Computable error bounds for coefficients perturbation methods
    El-Daou, MK
    COMPUTING, 2002, 69 (04) : 305 - 317
  • [22] COMPUTABLE ERROR BOUNDS FOR POLYNOMIAL COLLOCATION METHODS
    CRUICKSHANK, DM
    WRIGHT, K
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) : 134 - 151
  • [23] COMPUTABLE ERROR BOUNDS FOR INNER PRODUCT EVALUATION
    TSAO, NK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A661 - &
  • [24] Computable Error Bounds for Coefficients Perturbation Methods
    M. K. El-Daou
    Computing, 2002, 69 : 305 - 317
  • [25] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [26] LEHMANN BOUNDS AND EIGENVALUE ERROR ESTIMATION
    Ovtchinnikov, E. E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 2078 - 2102
  • [27] Rayleigh-Ritz Majorization Error Bounds for the Linear Response Eigenvalue Problem
    Teng, Zhongming
    Zhong, Hong-Xiu
    OPEN MATHEMATICS, 2019, 17 : 653 - 667
  • [28] Computable error bounds for nonconforming Fortin-Soulie finite element approximation of the Stokes problem
    Ainsworth, Mark
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Rankin, Richard
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 417 - 447
  • [29] Computable error bounds and estimates for the conjugate gradient method
    D. Calvetti
    S. Morigi
    L. Reichel
    F. Sgallari
    Numerical Algorithms, 2000, 25 : 75 - 88
  • [30] COMPUTABLE ERROR BOUNDS FOR AGGREGATED MARKOV CHAINS.
    Stewart, G.W.
    Journal of the ACM, 1983, 30 (02): : 271 - 285