LEHMANN BOUNDS AND EIGENVALUE ERROR ESTIMATION

被引:2
|
作者
Ovtchinnikov, E. E. [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
关键词
eigenvalue computation; Lehmann intervals; a posteriori error estimation; quadratic residual bounds; subspace iterations; RESIDUAL BOUNDS;
D O I
10.1137/100793062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper investigates the properties of Lehmann's optimal bounds for eigenvalues of Hermitian problems in order to find a way to efficiently use them for eigenvalue error estimation. A practical error estimation scheme is described that can be employed in the framework of a subspace iteration algorithm and is actually implemented by the HSL-ea19 software package from the HSL Mathematical Software Library of Rutherford Appleton Laboratory.
引用
收藏
页码:2078 / 2102
页数:25
相关论文
共 50 条
  • [1] FULLY COMPUTABLE ERROR BOUNDS FOR EIGENVALUE PROBLEM
    Hong, Qichen
    Xie, Hehu
    Yue, Meiling
    Zhang, Ning
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2018, 15 (1-2) : 260 - 276
  • [3] ERROR ESTIMATION FOR EIGENVALUE PROBLEMS
    RICHERT, WR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (04): : T206 - T206
  • [4] RESIDUAL ERROR-BOUNDS OF GENERALIZED EIGENVALUE SYSTEMS
    CAO, ZH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 93 : 113 - 120
  • [5] ON ERROR-BOUNDS IN STRONG APPROXIMATIONS FOR EIGENVALUE PROBLEMS
    KULKARNI, RP
    LIMAYE, BV
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1981, 22 (JAN): : 270 - 283
  • [6] ERROR BOUNDS FOR AN ISOLATED EIGENVALUE OBTAINED BY THE GALERKIN METHOD
    DESCLOUX, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (02): : 167 - 176
  • [7] Error bounds for eigenvalue and semidefinite matrix inequality systems
    Jourani, A
    Ye, JJ
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 525 - 540
  • [8] Error Bounds for Eigenvalue and Semidefinite Matrix Inequality Systems
    A. Jourani
    J.J. Ye
    Mathematical Programming, 2005, 104 : 525 - 540
  • [9] Bounds for sine and cosine via eigenvalue estimation
    Haukkanen, Pentti
    Mattila, Mika
    Merikoski, Jorma K.
    Kovacec, Alexander
    SPECIAL MATRICES, 2014, 2 (01): : 19 - 29
  • [10] Randomized error estimation for eigenvalue approximation
    Del Corso, GM
    CALCOLO, 2000, 37 (01) : 21 - 46