FULLY COMPUTABLE ERROR BOUNDS FOR EIGENVALUE PROBLEM

被引:0
|
作者
Hong, Qichen [1 ,2 ]
Xie, Hehu [1 ,2 ]
Yue, Meiling [1 ,2 ]
Zhang, Ning [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Eigenvalue problem; computable error estimate; guaranteed upper bound; guaranteed lower bound; complementary method; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the computable error estimates for the eigenvalue problem which is solved by the general conforming finite element methods on the general meshes. Based on the computable error estimate, we can give an asymptotically lower bound of the general eigenvalues. hirthermore, we also give a guaranteed upper bound of the error estimates for the first eigenfunction approximation and a guaranteed lower bound of the first eigenvalue based on computable error estimator. Some numerical examples are presented to validate the theoretical results deduced in this paper.
引用
下载
收藏
页码:260 / 276
页数:17
相关论文
共 50 条
  • [1] Fully computable a posteriori error bounds for eigenfunctions
    Liu, Xuefeng
    Vejchodsky, Tomas
    NUMERISCHE MATHEMATIK, 2022, 152 (01) : 183 - 221
  • [2] Fully computable a posteriori error bounds for eigenfunctions
    Xuefeng Liu
    Tomáš Vejchodský
    Numerische Mathematik, 2022, 152 : 183 - 221
  • [3] Computable Error Estimates for a Nonsymmetric Eigenvalue Problem
    Xie, Hehu
    Xie, Manting
    Yin, Xiaobo
    Yue, Meiling
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 583 - 602
  • [4] Computable error bounds for pointwise derivatives of a Neumann problem
    School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
    不详
    IMA J. Numer. Anal., 2 (251-271):
  • [5] Computable error bounds for pointwise derivatives of a Neumann problem
    Wang, S
    Sloan, IH
    Kelly, DW
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (02) : 251 - 271
  • [6] COMPUTABLE ERROR-BOUNDS FOR AN OPTIMIZATION PROBLEM WITH PARALLELEPIPED CONSTRAINT
    MOHD, IB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 58 (02) : 183 - 192
  • [7] Biharmonic Obstacle Problem: Guaranteed and Computable Error Bounds for Approximate Solutions
    Apushkinskaya, D. E.
    Repin, S., I
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (11) : 1823 - 1838
  • [8] Biharmonic Obstacle Problem: Guaranteed and Computable Error Bounds for Approximate Solutions
    D. E. Apushkinskaya
    S. I. Repin
    Computational Mathematics and Mathematical Physics, 2020, 60 : 1823 - 1838
  • [9] CALCULATING ERROR-BOUNDS FOR AN EIGENPAIR OF THE GENERALIZED EIGENVALUE PROBLEM
    ALEFELD, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (03): : 181 - 184
  • [10] Computable error bounds for semidefinite programming
    J of Global Optim, 2 (105-115):