Spatio-temporal Reconstruction of dPET Data Using Complex Wavelet Regularisation

被引:0
|
作者
McLennan, Andrew [1 ]
Brady, Michael [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
关键词
IMAGE-RECONSTRUCTION; PET; ALGORITHM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traditionally, dynamic PET studies reconstruct temporally contiguous PET images using algorithms which ignore the inherent consistency between frames. We present a method which imposes a regularisation constraint based on wavelet denoising. This is achieved efficiently using the Dual Tree - Complex Wavelet Transform (DT-CWT) of Kingsbury, which has many important advantages over the traditional discrete wavelet transform: shift invariance, implicit measure of local phase, and directional selectivity. In this paper, we apply the decomposition to the full spatio-temporal volume and use it for the reconstruction of dynamic (spatio-temporal) PET data. Instead of using traditional wavelet thresholding schemes we introduce a locally defined and empirically-determined Cross Scale regularisation technique. We show that wavelet based regularisation has the potential to produce superior reconstructions and examine the effect various levels of boundary enhancement have on the overall images. We demonstrate that wavelet-based spatio-temporally regularised reconstructions have superior performance over conventional Gaussian smoothing in simulated and clinical experiments. We find that our method outperforms conventional methods in terms of signal-to-noise ratio (SNR) and Mean Square Error (MSE), and removes the need to post-smooth the reconstruction.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 50 条
  • [1] Reconstruction of dynamic PET data using spatio-temporal wavelet l1 regularization
    Verhaeghe, Jercen
    De Ville, Dimitri Van
    Khalidov, Ildar
    Unser, Michael
    D'Asseler, Yves
    Lemahieu, Ignace
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 6540 - +
  • [2] Complex spatio-temporal features in MEG data
    Sapuppo, Francesca
    Umana, Elena
    Frasca, Mattia
    La Rosa, Manuela
    Shannahoff-Khalsa, David
    Fortuna, Luigi
    Bucolo, Maide
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (04) : 697 - 716
  • [3] Sequence matching using a spatio-temporal wavelet decomposition
    Corghi, A
    Leonardi, R
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '97, PTS 1-2, 1997, 3024 : 938 - 952
  • [4] Improved reconstruction of solar magnetic fields from imaging spectropolarimetry through spatio-temporal regularisation
    de la Cruz Rodriguez, J.
    Leenaarts, J.
    ASTRONOMY & ASTROPHYSICS, 2024, 685
  • [5] Detailed spatio-temporal sediment supply reconstruction using tree roots data
    Silhan, Karel
    Galia, Tomas
    Skarpich, Vaclav
    HYDROLOGICAL PROCESSES, 2016, 30 (22) : 4139 - 4153
  • [6] Smoothing spatio-temporal data with complex missing data patterns
    Arnone, Eleonora
    Sangalli, Laura M.
    Vicini, Andrea
    STATISTICAL MODELLING, 2023, 23 (04) : 327 - 356
  • [7] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [8] Spatio-temporal data classification using CVNNs
    Zahradnik, Jakub
    Skrbek, Miroslav
    SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 81 - 88
  • [9] SPATIO-TEMPORAL DEPTH DATA RECONSTRUCTION FROM A SUBSET OF SAMPLES
    Liu, Lee-Kang
    Truong Nguyen
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 368 - 372
  • [10] Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI
    Lotfi Chaari
    Philippe Ciuciu
    Sébastien Mériaux
    Jean-Christophe Pesquet
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2014, 27 : 509 - 529