Concentration phenomena for the fractional Q-curvature equation in dimension 3 and fractional Poisson formulas

被引:4
|
作者
DelaTorre, Azahara [1 ]
Gonzalez, Maria del Mar [2 ,3 ]
Hyder, Ali [4 ]
Martinazzi, Luca [5 ]
机构
[1] Univ Granada, Dept Anal, Fac Ciencias, Campus Fuentenueva S-N, Granada 18071, Spain
[2] Univ Autonoma Madrid, Dept Matemat, Campus Cantoblanco, Madrid 28049, Spain
[3] ICMAT, Campus Cantoblanco, Madrid 28049, Spain
[4] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[5] Univ Padua, Dept Math, Via Trieste 63, I-35121 Padua, Italy
基金
瑞士国家科学基金会;
关键词
ZETA-FUNCTIONAL DETERMINANTS; BLOW-UP ANALYSIS; CONFORMAL METRICS; BOUNDARY; COMPACTNESS; LAPLACIANS; MANIFOLDS; OPERATORS;
D O I
10.1112/jlms.12437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the compactness properties of metrics of prescribed fractional Q-curvature of order 3 in R3. We will use an approach inspired from conformal geometry, seeing a metric on a subset of R3 as the restriction of a metric on R+4 with vanishing fourth-order Q-curvature. We will show that a sequence of such metrics with uniformly bounded fractional Q-curvature can blow up on a large set (roughly, the zero set of the trace of a non-positive bi-harmonic function phi in R+4), in analogy with a four-dimensional result of Adimurthi-Robert-Struwe, and construct examples of such behaviour. In doing so, we produce general Poisson-type representation formulas (also for higher dimension), which are of independent interest.
引用
收藏
页码:423 / 451
页数:29
相关论文
共 50 条
  • [41] Anomalous fractional diffusion equation for transport phenomena
    Zeng, Qiuhua
    Li, Houqiang
    Liu, De
    Communications in Nonlinear Science and Numerical Simulation, 1999, 4 (02): : 99 - 104
  • [42] Concentration phenomena for fractional magnetic NLS equations
    Ambrosio, Vincenzo
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (02) : 479 - 517
  • [43] A LIE GROUP APPROACH TO SOLVE THE FRACTIONAL POISSON EQUATION
    Hashemi, M. S.
    Baleanu, D.
    Parto-Haghighi, M.
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (9-10): : 1289 - 1297
  • [44] Solving the Euler–Poisson–Darboux Equation of Fractional Order
    A. V. Dzarakhohov
    E. L. Shishkina
    Siberian Mathematical Journal, 2023, 64 : 707 - 719
  • [45] Group classification of the time fractional nonlinear Poisson equation
    Nass, Aminu Ma'aruf
    Mpungu, Kassimu
    Nuruddeen, Rahmatullah Ibrahim
    MATHEMATICAL COMMUNICATIONS, 2019, 24 (02) : 221 - 233
  • [46] A FRACTIONAL POISSON EQUATION: EXISTENCE, REGULARITY AND APPROXIMATIONS OF THE SOLUTION
    Sanz-Sole, Marta
    Torrecilla, Ivan
    STOCHASTICS AND DYNAMICS, 2009, 9 (04) : 519 - 548
  • [47] Classification and a priori estimates for the singular prescribing Q-curvature equation on 4-manifold
    Ahmedou, Mohameden
    Wu, Lina
    Zhang, Lei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (09)
  • [48] Large blow-up sets for the prescribed Q-curvature equation in the Euclidean space
    Hyder, Ali
    Iula, Stefano
    Martinazzi, Luca
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (02)
  • [49] On the fractional Newton and wave equation in one space dimension
    Velasco, M. P.
    Vazquez, L.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (13) : 3314 - 3324
  • [50] Concentration phenomena for fractional CR Yamabe type flows
    Chtioui, Hichem
    Hajaiej, Hichem
    Yacoub, Ridha
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79