Concentration phenomena for the fractional Q-curvature equation in dimension 3 and fractional Poisson formulas

被引:4
|
作者
DelaTorre, Azahara [1 ]
Gonzalez, Maria del Mar [2 ,3 ]
Hyder, Ali [4 ]
Martinazzi, Luca [5 ]
机构
[1] Univ Granada, Dept Anal, Fac Ciencias, Campus Fuentenueva S-N, Granada 18071, Spain
[2] Univ Autonoma Madrid, Dept Matemat, Campus Cantoblanco, Madrid 28049, Spain
[3] ICMAT, Campus Cantoblanco, Madrid 28049, Spain
[4] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[5] Univ Padua, Dept Math, Via Trieste 63, I-35121 Padua, Italy
基金
瑞士国家科学基金会;
关键词
ZETA-FUNCTIONAL DETERMINANTS; BLOW-UP ANALYSIS; CONFORMAL METRICS; BOUNDARY; COMPACTNESS; LAPLACIANS; MANIFOLDS; OPERATORS;
D O I
10.1112/jlms.12437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the compactness properties of metrics of prescribed fractional Q-curvature of order 3 in R3. We will use an approach inspired from conformal geometry, seeing a metric on a subset of R3 as the restriction of a metric on R+4 with vanishing fourth-order Q-curvature. We will show that a sequence of such metrics with uniformly bounded fractional Q-curvature can blow up on a large set (roughly, the zero set of the trace of a non-positive bi-harmonic function phi in R+4), in analogy with a four-dimensional result of Adimurthi-Robert-Struwe, and construct examples of such behaviour. In doing so, we produce general Poisson-type representation formulas (also for higher dimension), which are of independent interest.
引用
收藏
页码:423 / 451
页数:29
相关论文
共 50 条
  • [31] Numerical Algorithms for a Fractional Generalization of the Poisson Equation
    Belevtsov, Nikita S.
    Lukashchuk, Stanislav Yu
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [32] Equivariant Solutions to the Optimal Partition Problem for the Prescribed Q-Curvature Equation
    Juan Carlos Fernández
    Oscar Palmas
    Jonatán Torres Orozco
    The Journal of Geometric Analysis, 2024, 34
  • [33] Equivariant Solutions to the Optimal Partition Problem for the Prescribed Q-Curvature Equation
    Fernandez, Juan Carlos
    Palmas, Oscar
    Orozco, Jonatan Torres
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (04)
  • [34] Gluing metrics with prescribed Q-curvature and different asymptotic behaviour in high dimension
    Hyder, Ali
    Martinazzi, Luca
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (02) : 505 - 547
  • [35] Existence and concentration of nontrivial solutions for a fractional magnetic Schrodinger-Poisson type equation
    Ambrosio, Vincenzo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 1023 - 1061
  • [36] Multiplicity and concentration results for a fractional Schrodinger-Poisson type equation with magnetic field
    Ambrosio, Vincenzo
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 655 - 694
  • [37] Concentration Phenomena for the Paneitz Curvature Equation in RN
    Liu, Zhongyuan
    ADVANCED NONLINEAR STUDIES, 2013, 13 (04) : 837 - 851
  • [38] q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions
    Wang, Wuyang
    Khalid, Khansa Hina
    Zada, Akbar
    Ben Moussa, Sana
    Ye, Jun
    MATHEMATICS, 2023, 11 (09)
  • [39] The concentration of solutions to a fractional Schrodinger equation
    He, Qihan
    Long, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01):
  • [40] CONCENTRATION PHENOMENA FOR CRITICAL FRACTIONAL SCHRODINGER SYSTEMS
    Ambrosio, Vincenzo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 2085 - 2123