DEEPLY-SUPERVISED MULTI-DOSE PRIOR LEARNING FOR LOW-DOSE PET IMAGING

被引:1
|
作者
Gong, Yu [1 ,3 ]
Shan, Hongming [2 ]
Teng, Yueyang [1 ]
Zheng, Hairong [3 ]
Wang, Ge [2 ]
Wang, Shanshan [3 ]
机构
[1] NEU, Shenyang, Peoples R China
[2] RPI, Troy, NY USA
[3] Chinese Acad Sci, SIAT, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; low-dose PET; deeply-supervised; multi-dosage; NETWORK; CT;
D O I
10.1109/isbiworkshops50223.2020.9153450
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Positron emission tomography (PET) is an advanced imaging modality for tumor staging and therapy response. However, PET radiation exposure has raised public concerns and it is in need to develop low-dose PET imaging techniques. This paper proposes to explore prior information inherited in different levels of low-dose PET images with deep learning and then utilize them to estimate high-quality PET images from the image with the lowest dose. The proposed method is evaluated on the in vivo dataset with encouraging performance.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability
    Muller, Florence M.
    Vervenne, Boris
    Maebe, Jens
    Blankemeyer, Eric
    Sellmyer, Mark A.
    Zhou, Rong
    Karp, Joel S.
    Vanhove, Christian
    Vandenberghe, Stefaan
    MOLECULAR IMAGING AND BIOLOGY, 2024, 26 (01) : 101 - 113
  • [42] Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability
    Florence M. Muller
    Boris Vervenne
    Jens Maebe
    Eric Blankemeyer
    Mark A. Sellmyer
    Rong Zhou
    Joel S. Karp
    Christian Vanhove
    Stefaan Vandenberghe
    Molecular Imaging and Biology, 2024, 26 : 101 - 113
  • [43] SUPER Learning: A Supervised-Unsupervised Framework for Low-Dose CT Image Reconstruction
    Li, Zhipeng
    Ye, Siqi
    Long, Yong
    Ravishankar, Saiprasad
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3959 - 3968
  • [44] Dose-aware diffusion model for 3D low-dose PET denoising: A multi-institutional validation with reader study and real low-dose data
    Xie, Huidong
    Gan, Weijie
    Zhou, Bo
    Chen, Ming-Kai
    Kulon, Michal
    Boustani, Annemarie
    Chen, Xiongchao
    Liu, Qiong
    Guo, Xueqi
    Xia, Menghua
    Guo, Liang
    An, Hongyu
    Kamilov, Ulugbek
    Wang, Hanzhong
    Li, Biao
    Rominger, Axel
    Shi, Kuangyu
    Wang, Ge
    Liu, Chi
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [45] Low-dose computed tomography in prior asbestos workers
    Roberts, H.
    LUNG CANCER, 2006, 54 : S3 - S3
  • [46] A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET
    Song Xue
    Rui Guo
    Karl Peter Bohn
    Jared Matzke
    Marco Viscione
    Ian Alberts
    Hongping Meng
    Chenwei Sun
    Miao Zhang
    Min Zhang
    Raphael Sznitman
    Georges El Fakhri
    Axel Rominger
    Biao Li
    Kuangyu Shi
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 1843 - 1856
  • [47] A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET
    Xue, Song
    Guo, Rui
    Bohn, Karl Peter
    Matzke, Jared
    Viscione, Marco
    Alberts, Ian
    Meng, Hongping
    Sun, Chenwei
    Zhang, Miao
    Zhang, Min
    Sznitman, Raphael
    El Fakhri, Georges
    Rominger, Axel
    Li, Biao
    Shi, Kuangyu
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (06) : 1843 - 1856
  • [48] Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner
    Molinos, Cesar
    Sasser, Todd
    Salmon, Phil
    Gsell, Willy
    Viertl, David
    Massey, James C.
    Minczuk, Krzysztof
    Li, Jie
    Kundu, Bijoy K.
    Berr, Stuart
    Correcher, Carlos
    Bahadur, Ali
    Attarwala, Ali A.
    Stark, Simon
    Junge, Sven
    Himmelreich, Uwe
    Prior, John O.
    Laperre, Kjell
    Van Wyk, Sonica
    Heidenreich, Michael
    FRONTIERS IN MEDICINE, 2019, 6
  • [49] Quantitative accuracy of radiomic features of low-dose F-FDG PET imaging
    Gao, Xin
    Tham, Ivan W. K.
    Yan, Jianhua
    TRANSLATIONAL CANCER RESEARCH, 2020, 9 (08) : 4646 - 4655
  • [50] CT is still not a low-dose imaging modality
    Rehani, Madan M.
    Szczykutowicz, Timothy P.
    Zaidi, Habib
    MEDICAL PHYSICS, 2020, 47 (02) : 293 - 296