A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET

被引:0
|
作者
Song Xue
Rui Guo
Karl Peter Bohn
Jared Matzke
Marco Viscione
Ian Alberts
Hongping Meng
Chenwei Sun
Miao Zhang
Min Zhang
Raphael Sznitman
Georges El Fakhri
Axel Rominger
Biao Li
Kuangyu Shi
机构
[1] University of Bern,Department of Nuclear Medicine
[2] Shanghai Jiao Tong University School of Medicine,Department of Nuclear Medicine, Ruijin Hospital
[3] Ruijin Center,Collaborative Innovation Center for Molecular Imaging of Precision Medicine
[4] Technical University of Munich,Department of Informatics
[5] University of Bern,ARTORG Center
[6] Harvard Medical School,Gordon Center for Medical Imaging, Massachusetts General Hospital
关键词
Deep learning; Low-dose; PET; Recovery; Cross-scanner; Cross-tracer;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1843 / 1856
页数:13
相关论文
共 50 条
  • [1] A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET
    Xue, Song
    Guo, Rui
    Bohn, Karl Peter
    Matzke, Jared
    Viscione, Marco
    Alberts, Ian
    Meng, Hongping
    Sun, Chenwei
    Zhang, Miao
    Zhang, Min
    Sznitman, Raphael
    El Fakhri, Georges
    Rominger, Axel
    Li, Biao
    Shi, Kuangyu
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (06) : 1843 - 1856
  • [2] A cross-scanner robustdeep learning method for the recovery of full-dose imaging quality from low-dose PET
    Xue, S.
    Guo, R.
    Bohn, K. P.
    Matzke, J.
    Viscione, M.
    Viscione, M.
    Li, B.
    Rominger, A.
    Shi, K.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S483 - S483
  • [3] Noise reduction with cross-tracer transfer deep learning for low-dose oncological PET
    Liu, Hui
    Wu, Jing
    Lu, Wenzhuo
    Onofrey, John
    Liu, Yi-Hwa
    Liu, Chi
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [4] Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET
    Liu, Hui
    Wu, Jing
    Lu, Wenzhuo
    Onofrey, John A.
    Liu, Yi-Hwa
    Liu, Chi
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (18):
  • [5] Estimating standard-dose PET from low-dose PET with deep learning
    Lei, Yang
    Dong, Xue
    Wang, Tonghe
    Higgins, Kristin
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Nye, Jonathan A.
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [6] A deep learning method for the recovery of standard-dose imaging quality from ultra-low-dose PET on wavelet domain
    Xue, S.
    Liu, F.
    Wang, H.
    Viscione, M.
    Guo, R.
    Rominger, A.
    Li, B.
    Shi, K.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S100 - S100
  • [7] A deep learning method for the recovery of standard-dose imaging quality from ultra-low -dose PET on wavelet domain
    Xue, Song
    Zhu, Hong
    Guo, Rui
    Sari, Hasan
    Mingels, Clemens
    Zeimpekis, Konstantinos
    Prenosil, George
    Viscione, Marco
    Sznitman, Raphael
    Rominger, Axel
    Li, Biao
    Shi, Kuangyu
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [8] A deep learning method for the recovery of standard-dose imaging quality from ultra-low-dose PET on wavelet domain
    Xue, Song
    Liu, Fanxuan
    Wang, Hanzhong
    Zhu, Hong
    Sari, Hasan
    Viscione, Marco
    Sznitman, Raphael
    Rominger, Axel
    Guo, Rui
    Li, Biao
    Shi, Kuangyu
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, : 1901 - 1911
  • [9] Cross-Scanner Low-Dose Brain-PET Image Noise Reduction With Self-Ensembling
    Wang, Jiale
    Guo, Rui
    Miao, Ying
    Xue, Song
    Zhang, Yu
    Shi, Kuangyu
    Zheng, Guoyan
    Li, Biao
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (04) : 391 - 401
  • [10] Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT
    Lee, Dong Ho
    Lee, Jeong Min
    Lee, Chang Hee
    Afat, Saif
    Othman, Ahmed
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (02)