Photoluminescence quenching in films of conjugated polymers by electrochemical doping

被引:43
|
作者
van Reenen, S. [1 ]
Vitorino, M. V. [1 ,2 ]
Meskers, S. C. J. [3 ]
Janssen, R. A. J. [1 ,3 ]
Kemerink, M. [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
[3] Eindhoven Univ Technol, Dept Chem Engn, NL-5600 MB Eindhoven, Netherlands
[4] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 20期
关键词
LIGHT-EMITTING-DIODES; P-N-JUNCTION; EXCITON DIFFUSION; ENERGY-TRANSFER; CHARGE; POLY(3-HEXYLTHIOPHENE); TRANSISTORS; CELLS; RECOMBINATION; DYNAMICS;
D O I
10.1103/PhysRevB.89.205206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 1018 and 1019 cm(-3). The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either F "orster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Exciton Quenching and Migration in Single Conjugated Polymers
    Bardeen, Christopher
    SCIENCE, 2011, 331 (6017) : 544 - 545
  • [32] Quenching of Si nanocrystal photoluminescence by doping with gold or phosphorous
    Tchebotareva, AL
    de Dood, MJA
    Biteen, JS
    Atwater, HA
    Polman, A
    JOURNAL OF LUMINESCENCE, 2005, 114 (02) : 137 - 144
  • [33] Spectral shape of photoluminescence in luminescent π conjugated polymers
    Kobayashi, T
    Endo, T
    Rikukawa, M
    Sanui, K
    Kunugita, H
    Ema, K
    SYNTHETIC METALS, 2005, 154 (1-3) : 129 - 132
  • [34] Surface plasmon enhanced photoluminescence of conjugated polymers
    Park, Hong-Ju
    Vak, Doojin
    Noh, Yong-Young
    Lim, Bogyu
    Kim, Dong-Yu
    APPLIED PHYSICS LETTERS, 2007, 90 (16)
  • [35] Oxidation-Induced Photoluminescence of Conjugated Polymers
    Cativo, Ma. Helen M.
    Kamps, Amanda C.
    Gao, Jian
    Grey, John K.
    Hutchison, Geoffrey R.
    Park, So-Jung
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (16): : 4528 - 4535
  • [36] Visualization of electrochemical doping and light-emitting junction formation in conjugated polymer films
    Gao, J
    Dane, J
    APPLIED PHYSICS LETTERS, 2004, 84 (15) : 2778 - 2780
  • [37] Impact of doping on the mechanical properties of conjugated polymers
    Paleti, Sri Harish Kumar
    Kim, Youngseok
    Kimpel, Joost
    Craighero, Mariavittoria
    Haraguchi, Shuichi
    Muller, Christian
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (04) : 1702 - 1729
  • [38] DOPING DISORDER AND LEVEL STRUCTURES IN CONJUGATED POLYMERS
    HARIGAYA, K
    WADA, Y
    FESSER, K
    SYNTHETIC METALS, 1991, 43 (1-2) : 3579 - 3582
  • [39] Photoluminescence quenching of conjugated polymer nanocomposites for gamma ray detection
    Zhong, Haizheng
    Zhao, Yongsheng
    Li, Yangfang
    Pei, Qibing
    NANOTECHNOLOGY, 2008, 19 (50)
  • [40] ELECTROCHEMICAL CHARACTERIZATION OF SEVERAL CONJUGATED POLYMERS
    SCHWARZENBERG, M
    JOBST, K
    SAWTSCHENKO, L
    NOVAK, P
    ELECTROCHIMICA ACTA, 1990, 35 (02) : 403 - 411