Photoluminescence quenching in films of conjugated polymers by electrochemical doping

被引:43
|
作者
van Reenen, S. [1 ]
Vitorino, M. V. [1 ,2 ]
Meskers, S. C. J. [3 ]
Janssen, R. A. J. [1 ,3 ]
Kemerink, M. [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
[3] Eindhoven Univ Technol, Dept Chem Engn, NL-5600 MB Eindhoven, Netherlands
[4] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 20期
关键词
LIGHT-EMITTING-DIODES; P-N-JUNCTION; EXCITON DIFFUSION; ENERGY-TRANSFER; CHARGE; POLY(3-HEXYLTHIOPHENE); TRANSISTORS; CELLS; RECOMBINATION; DYNAMICS;
D O I
10.1103/PhysRevB.89.205206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 1018 and 1019 cm(-3). The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either F "orster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fluorescence quenching effect of metal ions for α,α′-diamine containing conjugated polymers in solid films
    Tian, LL
    Zhang, M
    Lu, P
    Zhang, W
    Yang, B
    Ma, YG
    CHINESE SCIENCE BULLETIN, 2004, 49 (03): : 246 - 248
  • [22] PL and EL quenching due to thin metal films in conjugated polymers and polymer LEDs
    Becker, H
    Lux, A
    Holmes, AB
    Friend, RH
    SYNTHETIC METALS, 1997, 85 (1-3) : 1289 - 1290
  • [24] High-resolution imaging of electrochemical doping and dedoping processes in luminescent conjugated polymers
    Hu, YF
    Tracy, C
    Gao, J
    APPLIED PHYSICS LETTERS, 2006, 88 (12)
  • [25] Chemical stabilization of doping in conjugated polymers
    Tang, Shi
    Irgum, Knut
    Edman, Ludvig
    ORGANIC ELECTRONICS, 2010, 11 (06) : 1079 - 1087
  • [26] Quenching of semiconductor quantum dot photoluminescence by a π-conjugated polymer
    Selmarten, D
    Jones, M
    Rumbles, G
    Yu, PR
    Nedeljkovic, J
    Shaheen, S
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33): : 15927 - 15932
  • [27] Triplet-polaron quenching in conjugated polymers
    Hertel, D.
    Meerholz, K.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (42): : 12075 - 12080
  • [28] Aggregation quenching of luminescence in electroluminescent conjugated polymers
    Xerox Wilson Center for Technology, 800 Phillips Road, Webster, NY 14580, United States
    J Phys Chem A, 14 (2394-2398):
  • [29] Aggregation quenching of luminescence in electroluminescent conjugated polymers
    Jakubiak, R
    Collison, CJ
    Wan, WC
    Rothberg, LJ
    Hsieh, BR
    JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (14): : 2394 - 2398
  • [30] Theory of luminescence quenching and photobleaching in conjugated polymers
    De Jong, MJM
    Vissenberg, MCJM
    PHILIPS JOURNAL OF RESEARCH, 1998, 51 (04) : 495 - 510