Scalable Production of Monolayer Shell(Pt)@Core(Pd) Nanoparticles by Electroless Cu UPD for Oxygen Reduction Reaction

被引:4
|
作者
Mahesh, Ijjada [1 ,2 ]
Sarkar, Arindam [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Mumbai, Maharashtra, India
[2] Case Western Reserve Univ, Dept Chem & Biomol Engn, Cleveland, OH 44106 USA
关键词
Monolayer; Core@shell; Electroless deposition; Electrocatalysts; Pt@Pd; Oxygen reduction reaction; SINGLE-CRYSTAL ELECTRODES; ATOMIC LAYER DEPOSITION; ELECTROCHEMICAL OXIDATION; UNDERPOTENTIAL DEPOSITION; HYDROGEN ADSORPTION; ASCORBIC-ACID; PLATINUM; ELECTROCATALYSTS; STABILITY; CATALYSTS;
D O I
10.1007/s12678-020-00635-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we discuss an electroless under potential deposition (UPD) method to synthesize core@shell monolayer nanoparticles in bulk quantities. In this electroless UPD method, potential is controlled and maintained in the UPD region by a redox couple. This electroless path enables the production of core@shell monolayer catalysts on any type of support, unlike the conventional UPD, where potential is controlled by an external power source which allows for the deposition only on conductive supports such as carbon. This was demonstrated by synthesizing Pt(shell)@Pd(core) nanopartricles on both conductive (Vulcan carbon) and non-conductive (alumina) supports by Cu UPD-galvanic replacement method. Core-shell structure of the Pd-Pt nanoparticles was confirmed by STEM characterization. The thickness of Pt shell in Pt@Pd nanoparticles was examined by analytical and experimental observations. Furthermore, catalytic activity of Pt@Pd/C nanoparticles, synthesized by the electroless Cu UPD-galvanic replacement method, was examined for oxygen reduction reaction.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条
  • [31] Effects of the Pt Shell Thickness on the Oxygen Reduction Reaction on a Well-Defined Pd@Pt Core-Shell Model Surface
    Hashiguchi, Yuta
    Nakamura, Isao
    Honma, Tetsuo
    Matsushita, Toshiyuki
    Murayama, Haruno
    Tokunaga, Makoto
    Choe, Yoong-Kee
    Fujitani, Tadahiro
    CHEMPHYSCHEM, 2023, 24 (01)
  • [32] Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction
    Kuttiyiel, Kurian A.
    Sasaki, Kotaro
    Choi, YongMan
    Su, Dong
    Liu, Ping
    Adzic, Radoslav R.
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) : 5297 - 5304
  • [33] Superior Catalysts for Oxygen Reduction Reaction Based on Porous Nanostars of a Pt, Pd, or Pt-Pd Alloy Shell Supported on a Gold Core
    Venarusso, Luna B.
    Bettini, Jefferson
    Maia, Gilberto
    CHEMELECTROCHEM, 2016, 3 (05): : 749 - 756
  • [34] Explainable AI for optimizing oxygen reduction on Pt monolayer core-shell catalysts
    Omidvar, Noushin
    Wang, Shih-Han
    Huang, Yang
    Pillai, Hemanth Somarajan
    Athawale, Andy
    Wang, Siwen
    Achenie, Luke E. K.
    Xin, Hongliang
    ELECTROCHEMICAL SCIENCE ADVANCES, 2024,
  • [35] Effects of oxygen coverage, catalyst size, and core composition on Pt-alloy core-shell nanoparticles for oxygen reduction reaction
    Praserthdam, Supareak
    Balbuena, Perla B.
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (13) : 5168 - 5177
  • [36] Pd@Pt core-shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction
    Zhao, Ruopeng
    Liu, Yi
    Liu, Chang
    Xu, Guangrui
    Chen, Yu
    Tang, Yawen
    Lu, Tianhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) : 20855 - 20860
  • [37] Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs
    Zhang, Geng
    Shao, Zhi-Gang
    Lu, Wangting
    Xie, Feng
    Xiao, Hui
    Qin, Xiaoping
    Yi, Baolian
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 132 : 183 - 194
  • [38] Pd@Pt core-shell concave decahedra: A class of catalysts for enhancing the oxygen reduction reaction
    Vara, Madeline
    Wang, Xue
    Luo, Ming
    Huang, Hongwen
    Ruditskiy, Aleksey
    Park, Jinho
    Bao, Shixiong
    Liu, Jingyue
    Howe, Jane
    Chi, Miaofang
    Xie, Zhaoxiong
    Xia, Younan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [39] Pt-Decorated PdCo@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction
    Wang, Deli
    Xin, Huolin L.
    Yu, Yingchao
    Wang, Hongsen
    Rus, Eric
    Muller, David A.
    Abruna, Hector D.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (50) : 17664 - 17666
  • [40] Synthesis of Pt@Cu Core-Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells
    Sarkar, A.
    Manthiram, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (10): : 4725 - 4732