Pd@Pt core-shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction

被引:73
|
作者
Zhao, Ruopeng [2 ]
Liu, Yi [2 ]
Liu, Chang [2 ]
Xu, Guangrui [1 ]
Chen, Yu [1 ]
Tang, Yawen [2 ]
Lu, Tianhong [2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Peoples R China
[2] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Jiangsu, Peoples R China
关键词
PLATINUM; PERFORMANCE; NANOPARTICLES; NANOSTRUCTURES; NANOCRYSTALS; OVERGROWTH; STABILITY; NANOTUBES; CATALYSTS;
D O I
10.1039/c4ta04917a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the electrocatalytic activity and stability of cathodic Pt electrocatalysts in proton exchange membrane fuel cells is an attractive research topic because of the importance of the oxygen reduction reaction (ORR) in PEMFCs. In this work, Pd@Pt core-shell tetrapods (CSNTPs) are prepared by a facile seeded growth process. During the synthesis, Pd tetrapods act as seeds to guide the growth of the dendritic Pt shell. Various physical techniques confirm that the as-prepared Pd@Pt CSNTPs have a core-shell structure and surface dendritic morphology. Moreover, the electrocatalytic activity and durability of the Pd@Pt CSNTPs for the ORR in acidic media were systemically studied by various electrochemical techniques such as cyclic voltammetry, ORR polarization measurements, and accelerated durability test (ADT). After an 8000 cycle ADT, Pd@Pt CSNTPs only lose 13% of their initial electrochemical surface area, whereas commercial Pt black loses 78%. Compared to Pt black, Pd@Pt CSNTPs show remarkably enhanced electrocatalytic activity and durability for the ORR owing to their specific structural characteristics and the synergistic effect between the Pt shell and Pd core.
引用
收藏
页码:20855 / 20860
页数:6
相关论文
共 50 条
  • [1] Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts
    Zhang, Yafeng
    Qin, Juan
    Leng, Deying
    Liu, Qianru
    Xu, Xiaoyan
    Yang, Bing
    Yin, Feng
    [J]. Journal of Power Sources, 2021, 485
  • [2] Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts
    Zhang, Yafeng
    Qin, Juan
    Leng, Deying
    Liu, Qianru
    Xu, Xiaoyan
    Yang, Bing
    Yin, Feng
    [J]. JOURNAL OF POWER SOURCES, 2021, 485
  • [3] Pd@Pt core-shell concave decahedra: A class of catalysts for enhancing the oxygen reduction reaction
    Vara, Madeline
    Wang, Xue
    Luo, Ming
    Huang, Hongwen
    Ruditskiy, Aleksey
    Park, Jinho
    Bao, Shixiong
    Liu, Jingyue
    Howe, Jane
    Chi, Miaofang
    Xie, Zhaoxiong
    Xia, Younan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] Pd@Pt Core-Shell Nanodots Arrays for Efficient Electrocatalytic Oxygen Reduction
    Li, Shuo
    Liu, Jiawei
    Zhu, Guilin
    Han, Heyou
    [J]. ACS APPLIED NANO MATERIALS, 2019, 2 (06) : 3695 - +
  • [5] Effects of the Pt Shell Thickness on the Oxygen Reduction Reaction on a Well-Defined Pd@Pt Core-Shell Model Surface
    Hashiguchi, Yuta
    Nakamura, Isao
    Honma, Tetsuo
    Matsushita, Toshiyuki
    Murayama, Haruno
    Tokunaga, Makoto
    Choe, Yoong-Kee
    Fujitani, Tadahiro
    [J]. CHEMPHYSCHEM, 2023, 24 (01)
  • [6] Core-Shell Electrocatalysts for Oxygen Reduction Reaction
    Chang Qiao-Wan
    Xiao Fei
    Xu Yuan
    Shao Min-Hua
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (01) : 9 - 17
  • [7] Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability
    Wang, Xue
    Vara, Madeline
    Luo, Ming
    Huang, Hongwen
    Ruditskiy, Aleksey
    Park, Jinho
    Bao, Shixiong
    Liu, Jingyue
    Howe, Jane
    Chi, Miaofang
    Xie, Zhaoxiong
    Xia, Younan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (47) : 15036 - 15042
  • [8] Designed Synthesis of Well-Defined Pd@Pt Core-Shell Nanoparticles with Controlled Shell Thickness as Efficient Oxygen Reduction Electrocatalysts
    Choi, Ran
    Choi, Sang-Il
    Choi, Chang Hyuck
    Nam, Ki Min
    Woo, Seong Ihl
    Park, Joon T.
    Han, Sang Woo
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (25) : 8190 - 8198
  • [9] Highly Active and Durable PdAg@Pd Core-Shell Nanoparticles as Fuel-Cell Electrocatalysts for the Oxygen Reduction Reaction
    Lu, Yizhong
    Jiang, Yuanyuan
    Gao, Xiaohui
    Wang, Xiaodan
    Chen, Wei
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (08) : 560 - 568
  • [10] Theoretical understanding of Pd@Pt core-shell nanoparticles
    An, Wei
    Liu, Ping
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246