A text classification model constructed by Latent Dirichlet Allocation and Deep Learning

被引:0
|
作者
Liu, Yu [1 ]
Jin, Zhengping [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
关键词
text classification; latent Dirichlet allocation; deep learning; Gibbs sampling;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we proposed a mixed model of text classification constructed by latent dirichlet allocation and deep learning. The model present that a text will be represent as a vector computing by latent dirichlet allocation algorithm, and this vector is probabilistic vector of corresponding topic words space. Then we input these topic vectors into a deep learning framework for computing nonlinear relationship of each vector. Finally, we constructed a text classification system. The proposed model achieves a higher accuracy when compared with other current popular algorithms, such as SVM, KNN and TFIDF.
引用
收藏
页码:2501 / 2504
页数:4
相关论文
共 50 条
  • [41] Latent Dirichlet Allocation Model Training With Differential Privacy
    Zhao, Fangyuan
    Ren, Xuebin
    Yang, Shusen
    Han, Qing
    Zhao, Peng
    Yang, Xinyu
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 1290 - 1305
  • [43] Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model
    George, Clint P.
    Doss, Hani
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [44] Intelligent radar software defect classification approach based on the latent Dirichlet allocation topic model
    Liu, Xi
    Yin, Yongfeng
    Li, Haifeng
    Chen, Jiabin
    Liu, Chang
    Wang, Shengli
    Yin, Rui
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [45] Intelligent radar software defect classification approach based on the latent Dirichlet allocation topic model
    Xi Liu
    Yongfeng Yin
    Haifeng Li
    Jiabin Chen
    Chang Liu
    Shengli Wang
    Rui Yin
    [J]. EURASIP Journal on Advances in Signal Processing, 2021
  • [46] Terminological ontology learning and population using latent Dirichlet allocation
    Colace, Francesco
    De Santo, Massimo
    Greco, Luca
    Amato, Flora
    Moscato, Vincenzo
    Picariello, Antonio
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2014, 25 (06): : 818 - 826
  • [47] A text classification network model combining machine learning and deep learning
    Chen, Hao
    Zhang, Haifei
    Yang, Yuwei
    He, Long
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2024, 44 (03) : 182 - 192
  • [48] A Machine Learning Framework for Document Classification by Topic Recognition Using Latent Dirichlet Allocation and Domain Knowledge
    Lavanya, B.
    Vageeswari, U.
    [J]. INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 509 - 520
  • [49] Sequential latent Dirichlet allocation
    Du, Lan
    Buntine, Wray
    Jin, Huidong
    Chen, Changyou
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (03) : 475 - 503
  • [50] Collective Latent Dirichlet Allocation
    Shen, Zhi-Yong
    Sun, Jun
    Shen, Yi-Dong
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 1019 - 1024