Terminological ontology learning and population using latent Dirichlet allocation

被引:27
|
作者
Colace, Francesco [1 ]
De Santo, Massimo [1 ]
Greco, Luca [1 ]
Amato, Flora [2 ]
Moscato, Vincenzo [2 ]
Picariello, Antonio [2 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz Ingn Elect & Matmat Ap, Salerno, Italy
[2] Univ Naples Federico II, Dipartimento Ingn Elect & Tecnol Informaz, Naples, Italy
来源
关键词
Ontologies; Ontology learning; Ontology population; Latent Dirichlet allocation;
D O I
10.1016/j.jvlc.2014.11.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The success of Semantic Web will heavily rely on the availability of formal ontologies to structure machine understanding data. However, there is still a lack of general methodologies for ontology automatic learning and population, i.e. the generation of domain ontologies from various kinds of resources by applying natural language processing and machine learning techniques In this paper, the authors present an ontology learning and population system that combines both statistical and semantic methodologies. Several experiments have been carried out, demonstrating the effectiveness of the proposed approach. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:818 / 826
页数:9
相关论文
共 50 条
  • [1] Learning and Using Context on a Humanoid Robot Using Latent Dirichlet Allocation
    Celikkanat, Hande
    Orhan, Guner
    Pugeault, Nicolas
    Guerin, Frank
    Sahin, Erol
    Kalkan, Sinan
    [J]. FOUTH JOINT IEEE INTERNATIONAL CONFERENCES ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (IEEE ICDL-EPIROB 2014), 2014, : 201 - 207
  • [2] An Ontology Term Extracting Method Based on Latent Dirichlet Allocation
    Yu Jing
    Wang Junli
    Zhao Xiaodong
    [J]. 2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, : 366 - 369
  • [3] Robust Initialization for Learning Latent Dirichlet Allocation
    Lovato, Pietro
    Bicego, Manuele
    Murino, Vittorio
    Perina, Alessandro
    [J]. SIMILARITY-BASED PATTERN RECOGNITION, SIMBAD 2015, 2015, 9370 : 117 - 132
  • [4] Learning Context on a Humanoid Robot using Incremental Latent Dirichlet Allocation
    Celikkanat, Hande
    Orhan, Guner
    Pugeault, Nicolas
    Guerin, Frank
    Sahin, Erol
    Kalkan, Sinan
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2016, 8 (01) : 42 - 59
  • [5] Identification of Pavement Issues Using Latent Dirichlet Allocation Machine Learning
    Parsons, Timothy A.
    Pullen, Aaron
    [J]. AIRFIELD AND HIGHWAY PAVEMENTS 2023: INNOVATION AND SUSTAINABILITY IN AIRFIELD AND HIGHWAY PAVEMENTS TECHNOLOGY, 2023, : 185 - 193
  • [6] Learning a Weather Dictionary of Atmospheric Patterns Using Latent Dirichlet Allocation
    Fery, Lucas
    Dubrulle, Berengere
    Podvin, Berengere
    Pons, Flavio
    Faranda, Davide
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (09)
  • [7] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [8] Bug localization using latent Dirichlet allocation
    Lukins, Stacy K.
    Kraft, Nicholas A.
    Etzkorn, Letha H.
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2010, 52 (09) : 972 - 990
  • [9] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 601 - 608
  • [10] Learning Probabilistic Kernel from Latent Dirichlet Allocation
    Lv, Qi
    Pang, Lin
    Li, Xiong
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (06): : 2527 - 2545