Topological band crossings in epitaxial strained SnTe

被引:9
|
作者
Fragkos, Sotirios [1 ,2 ]
Sant, Roberto [3 ,4 ]
Alvarez, Carlos [3 ,5 ]
Golias, Evangelos [6 ,7 ]
Marquez-Velasco, Jose [1 ]
Tsipas, Polychronis [1 ]
Tsoutsou, Dimitra [1 ]
Aminalragia-Giamini, Sigiava [1 ]
Xenogiannopoulou, Evangelia [1 ]
Okuno, Hanako [3 ,5 ]
Renaud, Gilles [3 ,5 ]
Rader, Oliver [6 ]
Dimoulas, Athanasios [1 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Nanosci & Nanotechnol, Athens 15310, Greece
[2] Univ West Attica, Dept Mech Engn, Athens 12244, Greece
[3] Univ Grenoble Alpes, F-38400 Grenoble, France
[4] CNRS, Neel Inst, F-38042 Grenoble, France
[5] Commissariat Energie Atom & Energies Alternat, Interdisciplinary Inst Res Grenoble, F-38054 Grenoble, France
[6] Elektronenspeicherring BESSY II, Helmholtz Zentrum Berlin Mat & Energie, Albert Einstein Str 15, D-12489 Berlin, Germany
[7] Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195 Berlin, Germany
关键词
TOTAL-ENERGY CALCULATIONS; DIRAC SEMIMETAL; DISCOVERY; CATALOG; PHASE;
D O I
10.1103/PhysRevMaterials.3.104201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Epitaxial SnTe (111) is grown by molecular-beam epitaxy on Bi2Te3 substrates. Structural evaluation indicates that SnTe deviates from cubic due to in-plane compressive strain, which induces significant changes in the electronic band structure. More specifically, a pair of gapless crossings between the two uppermost valence bands occurs in k space along the out-of-plane Gamma Z direction of the Brillouin zone, associated with a band inversion, thus defining topological three-dimensional Dirac nodes. Combined first-principles calculations and angle-resolved photoelectron spectroscopy reveal an overtilted Dirac cone indicating that the crossing is a topological type-III Dirac node at the borders between type-I and type-II Dirac nodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Symmetry-enforced topological band crossings in orthorhombic crystals: Classification and materials discovery
    Leonhardt, Andreas
    Hirschmann, Moritz M.
    Heinsdorf, Niclas
    Wu, Xianxin
    Fabini, Douglas H.
    Schnyder, Andreas P.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (12)
  • [22] MISFIT DISLOCATIONS IN EPITAXIAL PBS/SNTE(001) AND PBTE/SNTE(001) BICRYSTALS
    TSUJI, M
    MIZUNO, Y
    SUSUKI, Y
    MANNAMI, M
    JOURNAL OF CRYSTAL GROWTH, 1991, 108 (3-4) : 817 - 820
  • [23] VALENCE BAND STRUCTURE OF SNTE
    ROGERS, LM
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1968, 1 (07) : 845 - &
  • [24] The band spectrum of SnTe in emission
    Barrow, RF
    PROCEEDINGS OF THE PHYSICAL SOCIETY, 1940, 52 : 380 - 387
  • [25] CERTAIN PARAMETERS OF THE EPITAXIAL LAYER (SNTE)1-X(PBSE)X BAND-STRUCTURE
    FREIK, DM
    KOSTIK, BF
    STARIK, PM
    CHOBANYUK, VM
    UKRAINSKII FIZICHESKII ZHURNAL, 1981, 26 (10): : 1743 - 1745
  • [26] DEPENDENCE OF ELECTRICAL AND BAND PARAMETERS OF EPITAXIAL (PBSE)1-X(SNTE)X FILMS ON COMPOSITION
    FREIK, DM
    KOSTIK, BF
    VOROPAI, VA
    INORGANIC MATERIALS, 1983, 19 (05) : 665 - 668
  • [27] UNPAIRED BAND CROSSINGS
    RILEY, MA
    GARRETT, JD
    SIMPSON, J
    SHARPEYSCHAFER, JF
    PHYSICAL REVIEW LETTERS, 1988, 60 (07) : 553 - 556
  • [28] STRAINED-LAYER EPITAXY OF SNTE ON CDTE(110)
    HOCHST, H
    NILES, DW
    ENGELHARDT, MA
    HERNANDEZCALDERON, I
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03): : 775 - 779
  • [29] CARRIER DENSITY DEPENDENCE OF MAGNETORESISTANCE IN EPITAXIAL SNTE
    NISHIYAMA, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 40 (02) : 471 - 477
  • [30] Fundamental laws of chiral band crossings: Local constraints, global constraints, and topological phase diagrams
    Alpin, Kirill
    Hirschmann, Moritz M.
    Heinsdorf, Niclas
    Leonhardt, Andreas
    Yau, Wan Yee
    Wu, Xianxin
    Schnyder, Andreas P.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):