Novel Fractional-Order Difference Schemes Reducible to Standard Integer-Order Formulas

被引:4
|
作者
Paskas, Milorad P. [1 ]
Reljin, Irini S. [2 ]
Reljin, Branimir D. [2 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Innovat Ctr, Belgrade 11000, Serbia
[2] Univ Belgrade, Sch Elect Engn, Belgrade 11000, Serbia
关键词
Backward fractional differences; central fractional differences; fractional calculus; Grunwald-Letnikov derivatives; texture enhancement; DIFFUSION;
D O I
10.1109/LSP.2017.2699285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we advise numerical schemes for calculation of fractional derivatives of Grunwald-Letnikov type that reduce to standard integer-order derivative schemes. Since, in the literature, only forward differences have such a property, here, novel forms of backward differences and central differences based both on integer and half-integer mesh points are proposed. It enables the use of the proposed fractional differences interchangeably with standard difference formulas. The proposed schemes are qualitatively and quantitatively tested on 2-D signals for texture enhancement. The obtained results show that the proposed fractional differences provide better performances in comparison to traditional schemes.
引用
收藏
页码:912 / 916
页数:5
相关论文
共 50 条
  • [11] Circuit simulation for synchronization of a fractional-order and integer-order chaotic system
    Chen, Diyi
    Wu, Cong
    Iu, Herbert H. C.
    Ma, Xiaoyi
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1671 - 1686
  • [12] Mass transport in brain cells: integer-order and fractional-order modeling
    Shit, Abhijit
    Bora, Swaroop Nandan
    Physica Scripta, 2025, 100 (01)
  • [13] Circuit simulation for synchronization of a fractional-order and integer-order chaotic system
    Diyi Chen
    Cong Wu
    Herbert H. C. Iu
    Xiaoyi Ma
    Nonlinear Dynamics, 2013, 73 : 1671 - 1686
  • [14] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [15] ON POSITIVE SOLUTIONS TO NONLOCAL FRACTIONAL AND INTEGER-ORDER DIFFERENCE
    Goodrich, Christopher S.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (01) : 122 - 132
  • [16] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Zehrour, Okba
    Bendoukha, Samir
    Grassi, Giuseppe
    Viet-Thanh Pham
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [17] Dual projective synchronization between integer-order and fractional-order chaotic systems
    Zhang, Qing
    Xiao, Jian
    Zhang, Xiao-Qing
    Cao, Duan-Yang
    OPTIK, 2017, 141 : 90 - 98
  • [18] Optimal Tuning for Fractional-Order Controllers: An Integer-Order Approximating Filter Approach
    Rahimian, Mohammad Amin
    Tavazoei, Mohammad Saleh
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (02):
  • [19] Fractional-order diffusion coupled with integer-order diffusion formultiplicative noise removal
    Li, Chengxue
    He, Chuanjiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 136 : 34 - 43
  • [20] An Integer-Order Transfer Function Estimation Algorithm for Fractional-Order PID Controllers
    Bingi, Kishore
    Ibrahim, Rosdiazli
    Karsiti, Mohd Noh
    Hassan, Sabo Miya
    Harindran, Vivekananda Rajah
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2020, 11 (03) : 133 - 150