Analysis of a fourth-order scheme for a three-dimensional convection-diffusion model problem

被引:21
|
作者
Gopaul, Ashvin [1 ]
Bhuruth, Muddun [1 ]
机构
[1] Univ Mauritius, Fac Sci, Dept Math, Reduit, Mauritius
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 28卷 / 06期
关键词
convection-diffusion equation; compact fourth-order scheme; eigenvalues; oscillations;
D O I
10.1137/S1064827502410797
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive closed form expressions for the eigenvalues and discrete solution arising from a 19-point compact discretization of a three-dimensional convection-diffusion problem. It is shown that the coefficient matrix is positive definite when the cell-Reynolds number is greater than some critical value. By analyzing the terms composing the discrete solution, we prove that an oscillation-free discrete solution is guaranteed whenever the cell-Reynolds number exceeds a value which is grid-size dependent. An interesting result is that as the mesh size is refined, this value approaches the Golden Mean.
引用
收藏
页码:2075 / 2094
页数:20
相关论文
共 50 条
  • [21] A fourth-order accurate quasi-variable mesh compact finite-difference scheme for two-space dimensional convection-diffusion problems
    Jha, Navnit
    Kumar, Neelesh
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [22] A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation
    Li, Yibao
    Lee, Hyun Geun
    Xia, Binhu
    Kim, Junseok
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 108 - 116
  • [23] On an equal fourth-order-accurate temporal/spatial scheme for the convection-diffusion equation
    Sheu, Tony W. H.
    Lin, R. K.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2007, 51 (01) : 67 - 96
  • [24] Fast and robust sixth-order multigrid computation for the three-dimensional convection-diffusion equation
    Wang, Yin
    Zhang, Jun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (12) : 3496 - 3506
  • [25] Convection-Diffusion Model for Radon Migration in a Three-Dimensional Confined Space in Turbulent Conditions
    Feng, Shengyang
    Xiong, Dongbo
    Chen, Guojie
    Cui, Yu
    Chen, Puxin
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2020, 16 (03): : 651 - 663
  • [26] GMRES convergence analysis for a convection-diffusion model problem
    Liesen, J
    Strakos, Z
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06): : 1989 - 2009
  • [27] Adaptive scheme for three-dimensional convection - diffusion problems
    Monforte, L.
    Perez-Foguet, A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2014, 30 (01): : 60 - 67
  • [28] High-order perturbation-difference scheme for a convection-diffusion problem
    Choo, SM
    Chung, SK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) : 721 - 732
  • [29] Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
    Coudière, Y
    Vila, JP
    Villedieu, P
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (03): : 493 - 516
  • [30] Error expansion for a first-order upwind difference scheme applied to a model convection-diffusion problem
    Linss, T
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) : 239 - 253