High-order perturbation-difference scheme for a convection-diffusion problem

被引:4
|
作者
Choo, SM [1 ]
Chung, SK [1 ]
机构
[1] Seoul Natl Univ, Dept Math Educ, Seoul 151742, South Korea
关键词
convection-diffusion problem; peclet number; perturbation; weighted central scheme; modified upwind method;
D O I
10.1016/S0045-7825(99)00444-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finite difference methods with uniform meshes are considered for a one-dimensional singularly perturbed convection-diffusion problem. In order to obtain high-order of convergence, the difference methods are combined with a perturbation technique. The methods have E-uniform convergence and do not give non-physical oscillations in the numerical solutions. Existence and corresponding error estimates of the solution for the difference schemes have been shown. Numerical experiments are provided to back up the analysis. (C) 2000 Elsevier Science S.A. All rights reserved. MSG: 65L10; 65L12; 65L20.
引用
收藏
页码:721 / 732
页数:12
相关论文
共 50 条
  • [1] High-order compact difference scheme for convection-diffusion problems on nonuniform grids
    Wang, X
    Yang, ZF
    Huang, GH
    JOURNAL OF ENGINEERING MECHANICS, 2005, 131 (12) : 1221 - 1228
  • [2] A high-order upwind method for the convection-diffusion problem
    Liang, D
    Zhao, WD
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 147 (1-2) : 105 - 115
  • [3] Assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems
    Ferreira, V. G.
    Kurokawa, F. A.
    Queiroz, R. A. B.
    Kaibara, M. K.
    Oishi, C. M.
    Cuminato, J. A.
    Castelo, A.
    Tome, M. F.
    McKee, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (01) : 1 - 26
  • [4] Graded Galerkin Methods for the High-Order Convection-Diffusion Problem
    Liu, Song-Tao
    Xu, Yuesheng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (06) : 1261 - 1282
  • [5] A high-order compact exponential scheme for the fractional convection-diffusion equation
    Cui, Mingrong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 404 - 416
  • [6] On one effective difference scheme for the convection-diffusion problem
    Gromyko, G.
    Mathematical Modelling and Analysis, 2001, 6 (02) : 231 - 240
  • [7] A Compact High-Order Finite Difference Method for Unsteady Convection-Diffusion Equation
    Liao, Wenyuan
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2012, 13 (03): : 135 - 145
  • [8] A high-order finite volume scheme for unsteady convection-dominated convection-diffusion equations
    Xu, Mingtian
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2019, 76 (05) : 253 - 272
  • [9] High-order compact exponential finite difference methods for convection-diffusion type problems
    Tian, Z. F.
    Dai, S. Q.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) : 952 - 974
  • [10] High-order finite difference method for unsteady convection-diffusion problems with source term
    Yang, Zhifeng
    Wang, Xuan
    Journal of Hydrodynamics, 1999, 11 (02): : 97 - 102