On the set-theoretical Yang-Baxter equation

被引:0
|
作者
Lu, JH [1 ]
Yan, M
Zhu, YC
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] ENUMERATION OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION
    Akgun, O.
    Mereb, M.
    Vendramin, L.
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1469 - 1481
  • [32] A note on set-theoretic solutions of the Yang-Baxter equation
    Smoktunowicz, Agata
    JOURNAL OF ALGEBRA, 2018, 500 : 3 - 18
  • [33] Primitive set-theoretic solutions of the Yang-Baxter equation
    Cedo, F.
    Jespers, E.
    Okninski, J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (09)
  • [34] Quantum Yang-Baxter Equation, Braided Semigroups, and Dynamical Yang-Baxter Maps
    Matsumoto, Diogo Kendy
    Shibukawa, Youichi
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 227 - 237
  • [35] A Yang-Baxter equation for metaplectic ice
    Brubaker, Ben
    Buciumas, Valentin
    Bump, Daniel
    Gray, Nathan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (01) : 101 - 148
  • [36] Optical simulation of the Yang-Baxter equation
    Hu, Shuang-Wei
    Xue, Kang
    Ge, Mo-Lin
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [37] Classical Yang-Baxter equation and the A∞-constraint
    Polishchuk, A
    ADVANCES IN MATHEMATICS, 2002, 168 (01) : 56 - 95
  • [38] A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation
    Gateva-Ivanova, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) : 3828 - 3858
  • [39] A new family of set-theoretic solutions of the Yang-Baxter equation
    Castelli, M.
    Catino, F.
    Pinto, G.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1622 - 1629
  • [40] THE YANG-BAXTER EQUATION AND QUANTIZATION OF COCYCLES
    GOUREVITCH, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (12): : 845 - 848