ENUMERATION OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION

被引:8
|
作者
Akgun, O. [1 ]
Mereb, M. [2 ,3 ]
Vendramin, L. [2 ,3 ,4 ]
机构
[1] Univ St Andrews, Sch Comp Sci, St Andrews KY16 9SX, Fife, Scotland
[2] Univ Buenos Aires, FCEN, CONICET, IMAS, Pab 1,Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, FCEN, Dept Matemat, Pab 1,Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[4] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Yang-Baxter; biquandles; constraint programming; SKEW BRACES;
D O I
10.1090/mcom/3696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Constraint Satisfaction methods to enumerate and construct set-theoretic solutions to the Yang???Baxter equation of small size. We show that there are 321,931 involutive solutions of size nine, 4,895,272 involutive solutions of size ten and 422,449,480 non-involutive solution of size eight. Our method is then used to enumerate non-involutive biquandles.
引用
收藏
页码:1469 / 1481
页数:13
相关论文
共 50 条
  • [1] A note on set-theoretic solutions of the Yang-Baxter equation
    Smoktunowicz, Agata
    JOURNAL OF ALGEBRA, 2018, 500 : 3 - 18
  • [2] Primitive set-theoretic solutions of the Yang-Baxter equation
    Cedo, F.
    Jespers, E.
    Okninski, J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (09)
  • [3] A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation
    Gateva-Ivanova, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) : 3828 - 3858
  • [4] A new family of set-theoretic solutions of the Yang-Baxter equation
    Castelli, M.
    Catino, F.
    Pinto, G.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1622 - 1629
  • [5] Skew lattices and set-theoretic solutions of the Yang-Baxter equation
    Cvetko-Vah, Karin
    Verwimp, Charlotte
    JOURNAL OF ALGEBRA, 2020, 542 : 65 - 92
  • [6] Simplicity of indecomposable set-theoretic solutions of the Yang-Baxter equation
    Castelli, Marco
    Mazzotta, Marzia
    Stefanelli, Paola
    FORUM MATHEMATICUM, 2022, 34 (02) : 531 - 546
  • [7] ON STRUCTURE GROUPS OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION
    Lebed, Victoria
    Vendramin, Leandro
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) : 683 - 717
  • [8] Indecomposable involutive set-theoretic solutions of the Yang-Baxter equation
    Castelli, M.
    Catino, F.
    Pinto, G.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (10) : 4477 - 4493
  • [9] Finite Idempotent Set-Theoretic Solutions of the Yang-Baxter Equation
    Colazzo, Ilaria
    Jespers, Eric
    Kubat, Lukasz
    Van Antwerpen, Arne
    Verwimp, Charlotte
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, : 5458 - 5489
  • [10] Set-theoretic solutions of the Yang-Baxter equation, graphs and computations
    Gateva-Ivanova, Tatiana
    Majid, Shahn
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (11-12) : 1079 - 1112