Differentially private high dimensional sparse covariance matrix estimation

被引:3
|
作者
Wang, Di [1 ]
Xu, Jinhui [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Thuwal 23955, Saudi Arabia
[2] SUNY Buffalo, Dept Comp Sci & Engn, 338 Davis Hall, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
Differential privacy; Sparse covariance estimation; High dimensional statistics; OPTIMAL RATES; CONVERGENCE;
D O I
10.1016/j.tcs.2021.03.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial l(2)-norm based error bound whose dependence on the dimension drops to logarithmic instead of polynomial, it is significantly better than the existing ones, which add noise directly to the empirical covariance matrix. We also extend the l(2)-norm based error bound to a general l(w)-norm based one for any 1 <= w <= infinity, and show that they share the same upper bound asymptotically. Our approach can be easily extended to local differential privacy. Experiments on the synthetic datasets show results that are consistent with theoretical claims. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 50 条
  • [41] Robust Covariance Matrix Estimation and Sparse Bias Estimation for Multipath Mitigation
    Lesouple, Julien
    Barbiero, Franck
    Faurie, Frederic
    Sahmoudi, Mohamed
    Tourneret, Jean-Yves
    PROCEEDINGS OF THE 31ST INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2018), 2018, : 3433 - 3445
  • [42] Differentially Private Covariance Revisited
    Dong, Wei
    Liang, Yuting
    Yi, Ke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [43] High dimensional covariance matrix estimation by penalizing the matrix-logarithm transformed likelihood
    Yu, Philip L. H.
    Wang, Xiaohang
    Zhu, Yuanyuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 : 12 - 25
  • [44] Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints
    Yun-Hai Xiao
    Pei-Li Li
    Sha Lu
    Journal of the Operations Research Society of China, 2021, 9 : 543 - 568
  • [45] Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data
    Qi, Xinyu
    Wang, Jinru
    Zeng, Xiaochen
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [46] Estimation of covariance matrix via the sparse Cholesky factor with lasso
    Chang, Changgee
    Tsay, Ruey S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3858 - 3873
  • [47] Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints
    Xiao, Yun-Hai
    Li, Pei-Li
    Lu, Sha
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (03) : 543 - 568
  • [48] LARGE-SCALE SPARSE INVERSE COVARIANCE MATRIX ESTIMATION
    Bollhoefer, Matthias
    Eftekhari, Aryan
    Scheidegger, Simon
    Schenk, Olaf
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A380 - A401
  • [49] Sparse Covariance Matrix Estimation by DCA-Based Algorithms
    Duy Nhat Phan
    Hoai An Le Thi
    Tao Pham Dinh
    NEURAL COMPUTATION, 2017, 29 (11) : 3040 - 3077
  • [50] DOA ESTIMATION BY COVARIANCE MATRIX SPARSE RECONSTRUCTION OF COPRIME ARRAY
    Zhou, Chengwei
    Shi, Zhiguo
    Gu, Yujie
    Goodman, Nathan A.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2369 - 2373