Approximation by quasi-projection operators in Besov spaces

被引:34
|
作者
Jia, Rong-Qing [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Approximation order; Moduli of smoothness; Quasi-projection; Quasi-interpolation; Sobolev spaces; Besov spaces; SHIFT-INVARIANT SPACES;
D O I
10.1016/j.jat.2009.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate approximation of quasi-projection operators in Besov spaces B(p,q)(mu), mu > 0, 1 <= p, q <= infinity. Suppose I is a countable index set. Let (Phi(i))(i is an element of 1), be a family of functions in Lp(R(s)), and let ((Phi) over bar (i))(i is an element of 1) be a family of functions in L (p) over tilde (R(s)), where 1/p + 1/(p) over tilde = 1. Let Q be the quasi-projection operator given by Qf = Sigma(i is an element of I)< f, (Phi) over bar (i)>Phi(i), f is an element of L(p)(R(s)). For h > 0, by sigma(h) we denote the scaling operator given by sigma(h) f(x) := f(x) := f(x/h), x is an element of R(s). Let Q(h) := sigma(h) Q sigma(1)/h. Under some mild conditions on the functions phi(i) and (phi) over tilde (i) (i is an element of 1), we establish the following result: If 0 < mu < nu < k, and if Qg = g for all polynomials 017 degree at most k - 1, then the estimate vertical bar f - Q(h)f vertical bar B(p,q)(mu) <= Ch(nu-mu)vertical bar f vertical bar B(p,q)(nu) for all f is an element of B(p,q)(nu)(R(s)) is valid for all h > 0, where C is a constant independent of h and f. Density of quasi-projection operators in Besov spaces is also discussed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 200
页数:15
相关论文
共 50 条
  • [41] Bilinear pseudodifferential operators with symbols in Besov spaces
    Jodi Herbert
    Virginia Naibo
    Journal of Pseudo-Differential Operators and Applications, 2014, 5 : 231 - 254
  • [42] Isometric composition operators on the analytic Besov spaces
    Allen, Robert F.
    Heller, Katherine C.
    Pons, Matthew A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 414 - 423
  • [43] Analytic Besov spaces, approximation, and closed ideals
    Bahajji-El Idrissi, Hafid
    El Azhar, Hamza
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 259 - 268
  • [44] Polynomial Approximation in Quaternionic Bloch and Besov Spaces
    Gal, Sorin G.
    Sabadini, Irene
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (05)
  • [45] Polynomial Approximation in Quaternionic Bloch and Besov Spaces
    Sorin G. Gal
    Irene Sabadini
    Advances in Applied Clifford Algebras, 2020, 30
  • [46] Pseudodifferential Operators on Besov Spaces of Variable Smoothness
    V. D. Kryakvin
    V. S. Rabinovich
    Mathematical Notes, 2018, 104 : 545 - 558
  • [47] TOEPLITZ OPERATORS ON DIRICHLET-BESOV SPACES
    Perala, Antti
    Taskinen, Jari
    Virtanen, Jani A.
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (01): : 95 - 110
  • [48] Weighted Composition Operators from the Besov Spaces into the Bloch Spaces
    Colonna, Flavia
    Li, Songxiao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (04) : 1027 - 1039
  • [49] Nonlinear wavelet approximation in anisotropic Besov spaces
    Leisner, C
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) : 437 - 455