Fast signal quality monitoring for coherent communications enabled by CNN-based EVM estimation

被引:9
|
作者
Fan, Yuchuan [1 ,2 ]
Udalcovs, Aleksejs [2 ]
Pang, Xiaodan [1 ,2 ]
Natalino, Carlos [3 ]
Furdek, Marija [3 ]
Popov, Sergei [1 ]
Ozolins, Oskars [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Sch Engn Sci, Isafjordsgatan 22, S-16440 Kista, Sweden
[2] RISE Res Inst Sweden, Isafjordsgatan 22, S-16440 Kista, Sweden
[3] Chalmers Univ Technol, Dept Elect Engn, Chalmersplatsen 4, S-41296 Gothenburg, Sweden
关键词
JOINT OSNR;
D O I
10.1364/JOCN.409704
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a fast and accurate signal quality monitoring scheme that uses convolutional neural networks for error vector magnitude (EVM) estimation in coherent optical communications. We build a regression model to extract EVM information from complex signal constellation diagrams using a small number of received symbols. For the additive-white-Gaussian-noise-impaired channel, the proposed EVM estimation scheme shows a normalized mean absolute estimation error of 3.7% for quadrature phase-shift keying, 2.2% for 16-ary quadrature amplitude modulation (16QAM), and 1.1% for 64QAM signals, requiring only 100 symbols per constellation cluster in each observation period. Therefore, it can be used as a low-complexity alternative to conventional biterror-rate estimation, enabling solutions for intelligent optical performance monitoring. (C) 2021 Optical Society of America
引用
收藏
页码:B12 / B20
页数:9
相关论文
共 50 条
  • [21] Blood Pressure Estimation with Phonocardiogram on CNN-Based Approach
    Kokkhunthod, Kasidit
    Phapatanaburi, Khomdet
    Pathonsuwan, Wongsathon
    Jumphoo, Talit
    Anchuen, Patikorn
    Nimkuntod, Porntip
    Uthansakul, Monthippa
    Uthansakul, Peerapong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 1775 - 1794
  • [22] A Survey of CNN-Based Techniques for Scene Flow Estimation
    Muthu, Sundaram
    Tennakoon, Ruwan
    Hoseinnezhad, Reza
    Bab-Hadiashar, Alireza
    IEEE ACCESS, 2023, 11 : 99289 - 99303
  • [23] Adaptive Coati Optimization Enabled Deep CNN-based Image Captioning
    Balasubramaniam, S.
    Kadry, Seifedine
    Dhanaraj, Rajesh Kumar
    Kumar, K. Satheesh
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [24] CNN-SkelPose: a CNN-based skeleton estimation algorithm for clinical applications
    Zavala-Mondragon, Luis A.
    Lamichhane, Bishal
    Zhang, Lu
    de Haan, Gerard
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (06) : 2369 - 2380
  • [25] CNN-SkelPose: a CNN-based skeleton estimation algorithm for clinical applications
    Luis A. Zavala-Mondragon
    Bishal Lamichhane
    Lu Zhang
    Gerard de Haan
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 2369 - 2380
  • [26] Laser Linewidth Tolerant EVM Estimation Approach for Intelligent Signal Quality Monitoring Relying on Feedforward Neural Networks
    Fan, Yuchuan
    Pang, Xiaodan
    Udalcovs, Aleksejs
    Natalino, Carlos
    Schatz, Richard
    Furdek, Marija
    Popov, Sergei
    Ozolins, Oskars
    2021 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2021,
  • [27] CNN-based Approach for Visual Quality Improvement on HEVC
    Lee, Young-woon
    Kim, Ji-hae
    Choi, Young-ju
    Kim, Byung-gyu
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [28] CNN-Based Medical Ultrasound Image Quality Assessment
    Zhang, Siyuan
    Wang, Yifan
    Jiang, Jiayao
    Dong, Jingxian
    Yi, Weiwei
    Hou, Wenguang
    COMPLEXITY, 2021, 2021
  • [29] CNN-based denoising system for the image quality enhancement
    Satrughan Kumar
    Yashwant Kurmi
    Multimedia Tools and Applications, 2022, 81 : 20147 - 20174
  • [30] A fast Cascade Shape Regression Method based on CNN-based Initialization
    Gao, Pengcheng
    Xue, Jian
    Lu, Ke
    Yan, Yanfu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3037 - 3042