A fast Cascade Shape Regression Method based on CNN-based Initialization

被引:0
|
作者
Gao, Pengcheng [1 ]
Xue, Jian [1 ]
Lu, Ke [1 ]
Yan, Yanfu [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 国家重点研发计划;
关键词
FACE ALIGNMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cascade shape regression (CSR) methods predict facial landmarks by iteratively updating an initial shape and are state-of-the-art. The initial shape always limits the result and causes local optimum, which is usually obtained from the average face or by randomly picking a face from the training set. In this paper, we propose a CNN-based initial method for CSR. Convolution neural network provides a highly robust initial shape estimation, while the following CSR algorithm fine-tunes the initialization rapidly to achieve higher accuracy. Furthermore, CNN-based initial approach is proposed to get 68-point initial shape, which is calculated from convolutional network 5-point result by the radial basis function interpolation with thin-plate splines (RBF-TPS). Extensive experiments demonstrate that CSR methods are sensitive to the initialization and proposed approach gets favorable results compared to state-of-the-art algorithms and achieves real-time performance.
引用
收藏
页码:3037 / 3042
页数:6
相关论文
共 50 条
  • [1] A CNN-based Flow Correction Method for Fast Preview
    Xiao, Xiangyun
    Wang, Hui
    Yang, Xubo
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 431 - 440
  • [2] A CNN-Based Fast Inter Coding Method for VVC
    Pan, Zhaoqing
    Zhang, Peihan
    Peng, Bo
    Ling, Nam
    Lei, Jianjun
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1260 - 1264
  • [3] Improved fast neutron detection using CNN-based pulse shape discrimination
    Yoon, Seonkwang
    Lee, Chaehun
    Seo, Hee
    Kim, Ho-Dong
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (11) : 3925 - 3934
  • [4] CNN-Based Fast Source Device Identification
    Mandelli, Sara
    Cozzolino, Davide
    Bestagini, Paolo
    Verdoliva, Luisa
    Tubaro, Stefano
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1285 - 1289
  • [5] Fast and Accurate CNN-based Brushing in Scatterplots
    Fan, Chaoran
    Hauser, Helwig
    COMPUTER GRAPHICS FORUM, 2018, 37 (03) : 111 - 120
  • [6] Fast CNN-based document layout analysis
    Borges Oliveria, Dario Augusto
    Viana, Matheus Palhares
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1173 - 1180
  • [7] A CNN-based vortex identification method
    Liang Deng
    Yueqing Wang
    Yang Liu
    Fang Wang
    Sikun Li
    Jie Liu
    Journal of Visualization, 2019, 22 : 65 - 78
  • [8] A CNN-based vortex identification method
    Deng, Liang
    Wang, Yueqing
    Liu, Yang
    Wang, Fang
    Li, Sikun
    Liu, Jie
    JOURNAL OF VISUALIZATION, 2019, 22 (01) : 65 - 78
  • [9] CNN-based Stochastic Regression for IDDQ Outlier Identification
    Chen, Chun-Teng
    Yen, Chia-Heng
    Wen, Cheng-Yen
    Yang, Cheng-Hao
    Wu, Kai-Chiang
    Chern, Mason
    Chen, Ying-Yen
    Kuo, Chun-Yi
    Lee, Jih-Nung
    Kao, Shu-Yi
    Chao, Mango Chia-Tso
    2020 IEEE 38TH VLSI TEST SYMPOSIUM (VTS 2020), 2020,
  • [10] COMPARISON OF UNCERTAINTY QUANTIFICATION METHODS FOR CNN-BASED REGRESSION
    Wursthorn, K.
    Hillemann, M.
    Ulrich, M.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 721 - 728