Fast signal quality monitoring for coherent communications enabled by CNN-based EVM estimation

被引:9
|
作者
Fan, Yuchuan [1 ,2 ]
Udalcovs, Aleksejs [2 ]
Pang, Xiaodan [1 ,2 ]
Natalino, Carlos [3 ]
Furdek, Marija [3 ]
Popov, Sergei [1 ]
Ozolins, Oskars [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Sch Engn Sci, Isafjordsgatan 22, S-16440 Kista, Sweden
[2] RISE Res Inst Sweden, Isafjordsgatan 22, S-16440 Kista, Sweden
[3] Chalmers Univ Technol, Dept Elect Engn, Chalmersplatsen 4, S-41296 Gothenburg, Sweden
关键词
JOINT OSNR;
D O I
10.1364/JOCN.409704
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a fast and accurate signal quality monitoring scheme that uses convolutional neural networks for error vector magnitude (EVM) estimation in coherent optical communications. We build a regression model to extract EVM information from complex signal constellation diagrams using a small number of received symbols. For the additive-white-Gaussian-noise-impaired channel, the proposed EVM estimation scheme shows a normalized mean absolute estimation error of 3.7% for quadrature phase-shift keying, 2.2% for 16-ary quadrature amplitude modulation (16QAM), and 1.1% for 64QAM signals, requiring only 100 symbols per constellation cluster in each observation period. Therefore, it can be used as a low-complexity alternative to conventional biterror-rate estimation, enabling solutions for intelligent optical performance monitoring. (C) 2021 Optical Society of America
引用
收藏
页码:B12 / B20
页数:9
相关论文
共 50 条
  • [1] CNN-based Ego-Motion Estimation for Fast MAV Maneuvers
    Xu, Yingfu
    de Croon, Guido C. H. E.
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7606 - 7612
  • [2] CNN-based Rescaling Factor Estimation
    Liu, Chang
    Kirchner, Matthias
    IH&MMSEC '19: PROCEEDINGS OF THE ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2019, : 119 - 124
  • [3] CNN-based virtual microphone signal estimation for MPDR beamforming in underdetermined situations
    Yamaoka, Kouei
    Li, Li
    Ono, Nobutaka
    Makino, Shoji
    Yamada, Takeshi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [4] CNN-BASED INITIAL BACKGROUND ESTIMATION
    Halfaoui, Ibrahim
    Bouzaraa, Fahd
    Urfalioglu, Onay
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 101 - 106
  • [5] CNN-Based Fast Source Device Identification
    Mandelli, Sara
    Cozzolino, Davide
    Bestagini, Paolo
    Verdoliva, Luisa
    Tubaro, Stefano
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1285 - 1289
  • [6] CNN-Based Modulation Classification for OFDM Signal
    Song, Geonho
    Jang, Mingyu
    Yoon, Dongweon
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1326 - 1328
  • [7] Complex CNN-Based Equalization for Communication Signal
    Chang, Zexuan
    Wang, Yongshi
    Li, Hao
    Wang, Zhigang
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 513 - 517
  • [8] Fast and Accurate CNN-based Brushing in Scatterplots
    Fan, Chaoran
    Hauser, Helwig
    COMPUTER GRAPHICS FORUM, 2018, 37 (03) : 111 - 120
  • [9] Fast CNN-based document layout analysis
    Borges Oliveria, Dario Augusto
    Viana, Matheus Palhares
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1173 - 1180
  • [10] CNN-Based Simultaneous Dehazing and Depth Estimation
    Lee, Byeong-Uk
    Lee, Kyunghyun
    Oh, Jean
    Kweon, In So
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9722 - 9728