CNN-Based Modulation Classification for OFDM Signal

被引:0
|
作者
Song, Geonho [1 ]
Jang, Mingyu [1 ]
Yoon, Dongweon [1 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Seoul, South Korea
关键词
automatic modulation classification (AMC); machine learning; orthogonal frequency division multiplexing (OFDM); convolutional neural network (CNN);
D O I
10.1109/ICTC52510.2021.9620896
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation classification (AMC) is one of the important parts in cooperative and noncooperative contexts. This paper approaches the AMC problem by using deep learning. We propose a convolutional neural network (CNN)-based AMC to classify the modulation type of received orthogonal frequency division multiplexing (OFDM) signal and analyze its classification performance. CNN model is trained by using received OFDM signals for different modulation types and signal-to-noise ratios, and then classification accuracy is validated through computer simulations.
引用
收藏
页码:1326 / 1328
页数:3
相关论文
共 50 条
  • [1] Fusion Methods for CNN-Based Automatic Modulation Classification
    Zheng, Shilian
    Qi, Peihan
    Chen, Shichuan
    Yang, Xiaoniu
    [J]. IEEE ACCESS, 2019, 7 : 66496 - 66504
  • [2] VMD and CNN-Based Classification Model for Infrasound Signal
    Lu, Quanbo
    Li, Mei
    [J]. ARCHIVES OF ACOUSTICS, 2023, 48 (03) : 403 - 412
  • [3] CNN-Based Automatic Modulation Classification Under Phase Imperfections
    Oikonomou, Thrassos K.
    Evgenidis, Nikos G.
    Nixarlidis, Dimitrios G.
    Tyrovolas, Dimitrios
    Tegos, Sotiris A.
    Diamantoulakis, Panagiotis D.
    Sarigiannidis, Panagiotis G.
    Karagiannidis, George K.
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (05) : 1508 - 1512
  • [4] CNN-Based Automatic Modulation Classification over Rician Fading Channel
    Wang, Zikai
    Liang, Qilian
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 285 - 292
  • [5] CNN-based Automatic Modulation Classification Over Underwater Acoustic Channels
    Xiao, Yuhua
    Zhang, Yifeng
    Tao, Jun
    Cao, Hongli
    Wu, Yanjun
    Qiao, Yongjie
    [J]. OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [6] CNN-based InSAR Coherence Classification
    Mukherjee, Subhayan
    Zimmer, Aaron
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    [J]. 2018 IEEE SENSORS, 2018, : 1612 - 1615
  • [7] CNN-Based Automatic Modulation Classification for Beyond 5G Communications
    Hermawan, Ade Pitra
    Ginanjar, Rizki Rivai
    Kim, Dong-Seong
    Lee, Jae-Min
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (05) : 1038 - 1041
  • [8] Additive Attention for CNN-based Classification
    Li, Xuesheng
    Xu, Qiwei
    Chen, Xinlei
    Li, Chen
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 55 - 59
  • [9] pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters
    Shujaat, Muhammad
    Wahab, Abdul
    Tayara, Hilal
    Chong, Kil To
    [J]. GENES, 2020, 11 (12) : 1 - 11
  • [10] Complex CNN-Based Equalization for Communication Signal
    Chang, Zexuan
    Wang, Yongshi
    Li, Hao
    Wang, Zhigang
    [J]. 2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 513 - 517