VMD and CNN-Based Classification Model for Infrasound Signal

被引:1
|
作者
Lu, Quanbo [1 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
关键词
infrasound signal; variational mode decomposition; convolutional neural network; fast Fourier transform;
D O I
10.24425/aoa.2023.145247
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classifica-tion approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条
  • [1] CNN-Based Modulation Classification for OFDM Signal
    Song, Geonho
    Jang, Mingyu
    Yoon, Dongweon
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1326 - 1328
  • [2] CNN-Based Model for Skin Diseases Classification
    Altimimi, Asmaa S. Zamil
    Abdulkader, Hasan
    ARTIFICIAL INTELLIGENCE FOR INTERNET OF THINGS (IOT) AND HEALTH SYSTEMS OPERABILITY, IOTHIC 2023, 2024, 8 : 28 - 38
  • [3] A CNN-based neuromorphic model for classification and decision control
    Arena, Paolo
    Cali, Marco
    Patane, Luca
    Portera, Agnese
    Spinosa, Angelo G.
    NONLINEAR DYNAMICS, 2019, 95 (03) : 1999 - 2017
  • [4] A CNN-based neuromorphic model for classification and decision control
    Paolo Arena
    Marco Calí
    Luca Patané
    Agnese Portera
    Angelo G. Spinosa
    Nonlinear Dynamics, 2019, 95 : 1999 - 2017
  • [5] An interpretable CNN-based model for mass classification in mammography
    Li, Guobin
    Zhou, Mou
    Fu, Yu
    Alam, Nashid
    Denton, Erika
    Zwiggelaar, Reyer
    Knowledge-Based Systems, 2025, 316
  • [6] PromoterLCNN: A Light CNN-Based Promoter Prediction and Classification Model
    Hernandez, Daryl
    Jara, Nicolas
    Araya, Mauricio
    Duran, Roberto E.
    Buil-Aranda, Carlos
    GENES, 2022, 13 (07)
  • [7] CNN-Based Voice Emotion Classification Model for Risk Detection
    Yoo, Hyun
    Baek, Ji-Won
    Chung, Kyungyong
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02): : 319 - 334
  • [8] CNN-based InSAR Coherence Classification
    Mukherjee, Subhayan
    Zimmer, Aaron
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    2018 IEEE SENSORS, 2018, : 1612 - 1615
  • [9] Additive Attention for CNN-based Classification
    Li, Xuesheng
    Xu, Qiwei
    Chen, Xinlei
    Li, Chen
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 55 - 59
  • [10] CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks
    Bilal, Muehenad
    Podishetti, Ranadheer
    Girish, Tangirala Sri
    Grossmann, Daniel
    Bregulla, Markus
    SENSORS, 2025, 25 (05)