VMD and CNN-Based Classification Model for Infrasound Signal

被引:1
|
作者
Lu, Quanbo [1 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
关键词
infrasound signal; variational mode decomposition; convolutional neural network; fast Fourier transform;
D O I
10.24425/aoa.2023.145247
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classifica-tion approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条
  • [31] CNN-based Large Scale Landsat Image Classification
    Zhao, Xuemei
    Gao, Lianru
    Chen, Zhengchao
    Zhang, Bing
    Liao, Wenzhi
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 611 - 617
  • [32] Gait classification through CNN-based ensemble learning
    Xiuhui Wang
    Ke Yan
    Multimedia Tools and Applications, 2021, 80 : 1565 - 1581
  • [33] Automatic Stones Classification through a CNN-Based Approach
    Tropea, Mauro
    Fedele, Giuseppe
    De Luca, Raffaella
    Miriello, Domenico
    De Rango, Floriano
    SENSORS, 2022, 22 (16)
  • [34] Caffe CNN-based classification of hyperspectral images on GPU
    Garea, Alberto S.
    Heras, Dora B.
    Arguello, Francisco
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1065 - 1077
  • [35] CNN-based classification of phonocardiograms using fractal techniques
    Riccio, Daniel
    Brancati, Nadia
    Sannino, Giovanna
    Verde, Laura
    Frucci, Maria
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [36] CNN-based features for retrieval and classification of food images
    Ciocca, Gianluigi
    Napoletano, Paolo
    Schettini, Raimondo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 176 : 70 - 77
  • [37] CNN-Based Automatic Modulation Classification in OFDM Systems
    Song, Geonho
    Jang, Mingyu
    Yoon, Dongweon
    2022 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS, 2022, : 101 - 104
  • [38] Image Classification with CNN-based Fisher Vector Coding
    Song, Yan
    Hong, Xinhai
    McLoughlin, Ian
    Dai, Lirong
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [39] Caffe CNN-based classification of hyperspectral images on GPU
    Alberto S. Garea
    Dora B. Heras
    Francisco Argüello
    The Journal of Supercomputing, 2019, 75 : 1065 - 1077
  • [40] CNN-based fusion and classification of SAR and Optical data
    Shakya, Achala
    Biswas, Mantosh
    Pal, Mahesh
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (22) : 8839 - 8861