Caffe CNN-based classification of hyperspectral images on GPU

被引:2
|
作者
Alberto S. Garea
Dora B. Heras
Francisco Argüello
机构
[1] Universidade de Santiago de Compostela,Centro singular de Investigación en Tecnoloxías da Información (CiTIUS)
[2] Universidade de Santiago de Compostela,Departamento de Electrónica y Computación
来源
关键词
Hyperspectral; Classification; Convolutional neural network; Deep learning; Caffe; GPU; CuDNN;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning techniques based on Convolutional Neural Networks (CNNs) are extensively used for the classification of hyperspectral images. These techniques present high computational cost. In this paper, a GPU (Graphics Processing Unit) implementation of a spatial-spectral supervised classification scheme based on CNNs and applied to remote sensing datasets is presented. In particular, two deep learning libraries, Caffe and CuDNN, are used and compared. In order to achieve an efficient GPU projection, different techniques and optimizations have been applied. The implemented scheme comprises Principal Component Analysis (PCA) to extract the main features, a patch extraction around each pixel to take the spatial information into account, one convolutional layer for processing the spectral information, and fully connected layers to perform the classification. To improve the initial GPU implementation accuracy, a second convolutional layer has been added. High speedups are obtained together with competitive classification accuracies.
引用
收藏
页码:1065 / 1077
页数:12
相关论文
共 50 条
  • [1] Caffe CNN-based classification of hyperspectral images on GPU
    Garea, Alberto S.
    Heras, Dora B.
    Arguello, Francisco
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1065 - 1077
  • [2] CNN-Based Super-Resolution of Hyperspectral Images
    Arun, P. V.
    Buddhiraju, Krishna Mohan
    Porwal, Alok
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6106 - 6121
  • [3] CNN-based features for retrieval and classification of food images
    Ciocca, Gianluigi
    Napoletano, Paolo
    Schettini, Raimondo
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 176 : 70 - 77
  • [4] CNN-Based Classification of Degraded Images Without Sacrificing Clean Images
    Endo, Kazuki
    Tanaka, Masayuki
    Okutomi, Masatoshi
    [J]. IEEE ACCESS, 2021, 9 : 116094 - 116104
  • [5] pHSCNN: CNN-based hyperspectral recovery from a pair of RGB images
    Sun, Yuanyuan
    Zhang, Junchao
    Liang, Rongguang
    [J]. OPTICS EXPRESS, 2022, 30 (14): : 24862 - 24873
  • [6] A New Data Augmentation Technique for the CNN-based Classification of Hyperspectral Imagery
    Accion Montes, Alvaro
    Heras, Dora B.
    Arguello, Francisco
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [7] A CNN-Based Spatial Feature Fusion Algorithm for Hyperspectral Imagery Classification
    Guo, Alan J. X.
    Zhu, Fei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 7170 - 7181
  • [8] CNN-Based Classification of Degraded Images With Awareness of Degradation Levels
    Endo, Kazuki
    Tanaka, Masayuki
    Okutomi, Masatoshi
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (10) : 4046 - 4057
  • [9] HSCNN plus : Advanced CNN-Based Hyperspectral Recovery from RGB Images
    Shi, Zhan
    Chen, Chang
    Xiong, Zhiwei
    Liu, Dong
    Wu, Feng
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1052 - 1060
  • [10] CNN-Based Salient Object Detection on Hyperspectral Images Using Extended Morphology
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19