A stochastic Keller-Segel model of chemotaxis

被引:37
|
作者
Chavanis, Pierre-Henri [1 ]
机构
[1] Univ Toulouse 3, Phys Theor Lab, CNRS, UMR 5152, F-31062 Toulouse 4, France
关键词
Chemotaxis; Self-organization; Nonlinear dynamics; Fluctuations; Stochastic processes; Long-range interactions; LONG-RANGE INTERACTIONS; GRAVITATING BROWNIAN PARTICLES; BACTERIAL RANDOM MOTILITY; FOKKER-PLANCK EQUATIONS; PATTERN-FORMATION; KINETIC-EQUATIONS; DIMENSIONS; SYSTEMS; AGGREGATION; DERIVATION;
D O I
10.1016/j.cnsns.2008.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce stochastic models of chemotaxis generalizing the deterministic Keller-Segel model. These models include fluctuations which are important in systems with small particle numbers or close to a critical point. Following Dean's approach, we derive the exact kinetic equation satisfied by the density distribution of cells. In the mean field limit where statistical correlations between cells are neglected, we recover the Keller-Segel model governing the smooth density field. We also consider hydrodynamic and kinetic models of chemotaxis that take into account the inertia of the particles and lead to a delay in the adjustment of the velocity of cells with the chemotactic gradient. We make the connection with the Cattaneo model of chemotaxis and the telegraph equation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [21] The fractional Keller-Segel model
    Escudero, Carlos
    NONLINEARITY, 2006, 19 (12) : 2909 - 2918
  • [22] Asymptotic behaviour of solutions to the Keller-Segel model for chemotaxis with prevention of overcrowding
    Guo, Haojie
    Zheng, Sining
    Liang, Bo
    NONLINEARITY, 2013, 26 (02) : 405 - 416
  • [23] Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis model
    Yang, Xuguang
    Shi, Baochang
    Chai, Zhenhua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1653 - 1670
  • [24] The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results
    Dirk Horstmann
    Nonlinear Differential Equations and Applications NoDEA, 2001, 8 : 399 - 423
  • [25] Beyond the Keller-Segel model
    Romanczuk, P.
    Erdmann, U.
    Engel, H.
    Schimansky-Geier, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 : 61 - 77
  • [26] Stability of spiky solution of Keller-Segel's minimal chemotaxis model
    Chen, Xinfu
    Hao, Jianghao
    Wang, Xuefeng
    Wu, Yaping
    Zhang, Yajing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (09) : 3102 - 3134
  • [27] On spectra of linearized operators for Keller-Segel models of chemotaxis
    Dejak, S. I.
    Lushnikov, P. M.
    Ovchinnikov, Yu N.
    Sigal, I. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (15) : 1245 - 1254
  • [28] ASYMPTOTIC BEHAVIOR OF THE STOCHASTIC KELLER-SEGEL EQUATIONS
    Shang, Yadong
    Tian, Jianjun Paul
    Wang, Bixiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03): : 1367 - 1391
  • [29] Direct Discontinuous Galerkin Method with Interface Correction for the Keller-Segel Chemotaxis Model
    Zhong, Xinghui
    Qiu, Changxin
    Yan, Jue
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (01)
  • [30] CHEMOTAXIS AND CHEMOKINESIS IN EUKARYOTIC CELLS - THE KELLER-SEGEL EQUATIONS AS AN APPROXIMATION TO A DETAILED MODEL
    SHERRATT, JA
    BULLETIN OF MATHEMATICAL BIOLOGY, 1994, 56 (01) : 129 - 146