REPRESENTATIONS OF GRADED MULTILOOP LIE ALGEBRAS

被引:6
|
作者
Pal, Tanusree [1 ]
Batra, Punita [1 ]
机构
[1] Harish Chandra Res Inst, Dept Math, Allahabad 211019, Uttar Pradesh, India
关键词
Irreducible integrable module; Multiloop Lie algebra; IRREDUCIBLE INTEGRABLE MODULES; DIMENSIONAL WEIGHT SPACES; LOOP ALGEBRAS; CLASSIFICATION;
D O I
10.1080/00927870902831201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (g) over tilde (A) (respectively, (g) over tilde (A) (mu)) be the graded multiloop Lie algebra (respectively, graded twisted multiloop Lie algebra) associated with the simple finite dimensional Lie algebra g over C. In this article, we prove that irreducible integrable (g) over tilde (A) (mu)-modules with finite dimensional weight spaces are either highest weight modules or their duals and classify the isomorphism classes of irreducible integrable (g) over tilde (A)-modules and (g) over tilde (A)(mu)-modules with finite dimensional weight spaces.
引用
收藏
页码:49 / 67
页数:19
相关论文
共 50 条
  • [21] BCN-graded Lie algebras arising from fermionic representations
    Chen, Hongjia
    Gao, Yun
    [J]. JOURNAL OF ALGEBRA, 2007, 308 (02) : 545 - 566
  • [22] ON REPRESENTATIONS OF LIE ALGEBRAS
    HARISHCHANDRA
    [J]. ANNALS OF MATHEMATICS, 1949, 50 (04) : 900 - 915
  • [23] Representations of Lie algebras
    Vyacheslav Futorny
    [J]. São Paulo Journal of Mathematical Sciences, 2022, 16 : 131 - 156
  • [24] Representations of Lie algebras
    Futorny, Vyacheslav
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 131 - 156
  • [25] Algebras of quotients of graded Lie algebras
    Sanchez Ortega, Juana
    Siles Molina, Mercedes
    [J]. JOURNAL OF ALGEBRA, 2010, 323 (07) : 2002 - 2015
  • [26] Representations of ω-Lie algebras and tailed derivations of Lie algebras
    Zhang, Runxuan
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (02) : 325 - 339
  • [27] New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology
    Pinczon, Georges
    Ushirobira, Rosane
    [J]. JOURNAL OF LIE THEORY, 2007, 17 (03) : 633 - 667
  • [28] DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS
    Jubin, Benoit
    Kotov, Alexei
    Poncin, Norbert
    Salnikov, Vladimir
    [J]. TRANSFORMATION GROUPS, 2022, 27 (02) : 497 - 523
  • [29] DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS
    BENOIT JUBIN
    ALEXEI KOTOV
    NORBERT PONCIN
    VLADIMIR SALNIKOV
    [J]. Transformation Groups, 2022, 27 : 497 - 523
  • [30] Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras
    Fulin Chen
    Shaobin Tan
    [J]. Frontiers of Mathematics in China, 2011, 6 : 607 - 628