Embedding of countable orders in Turing degrees

被引:0
|
作者
Ishmukhametov, ST [1 ]
机构
[1] Ulyanovsk State Univ, Ulyanovsk, Russia
基金
俄罗斯基础研究基金会;
关键词
recursive function; Turing degrees; embedding method; ordering; lattice;
D O I
10.1023/A:1021400820931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In their classical papers, Lerman, Lachlan, and Lebeuf developed the embedding method, which provides constructions of initial segments of Turing degrees isomorphic to various partially ordered structures. We analyze this method and prove that there is a nonzero degree below each decreasing chain of degrees uniform in 0'. This imposes restrictions on the application of the embedding method.
引用
收藏
页码:631 / 635
页数:5
相关论文
共 50 条
  • [41] FAMILIES OF PERMUTATIONS AND IDEALS OF TURING DEGREES
    Morozov, A. S.
    Puzarenko, V. G.
    Faizrachmanov, M. Kh.
    ALGEBRA AND LOGIC, 2023, 61 (06) : 481 - 490
  • [42] THE Δ20 TURING DEGREES: AUTOMORPHISMS AND DEFINABILITY
    Slaman, Theodore A.
    Soskova, Mariya I.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) : 1351 - 1375
  • [43] Turing degrees and randomness for continuous measures
    Li, Mingyang
    Reimann, Jan
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (1-2) : 39 - 59
  • [44] On computable numberings of families of Turing degrees
    Faizrahmanov, Marat
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (5-6) : 609 - 622
  • [45] THE TURING DEGREES AND KEISLER'S ORDER
    Malliaris, Maryanthe
    Shelah, Saharon
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (01) : 331 - 341
  • [46] Turing Degrees in Refinements of the Arithmetical Hierarchy
    V. L. Selivanov
    M. M. Yamaleev
    Algebra and Logic, 2018, 57 : 222 - 236
  • [47] An extension of the recursively enumerable Turing degrees
    Simpson, Stephen G.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 287 - 297
  • [48] Contiguity and distributivity in the enumerable turing degrees
    Downey, RG
    Lempp, S
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (04) : 1215 - 1240
  • [49] On the Turing degrees of minimal index sets
    Teutsch, Jason
    ANNALS OF PURE AND APPLIED LOGIC, 2007, 148 (1-3) : 63 - 80
  • [50] Local initial segments of the Turing degrees
    Kjos-Hanssen, B
    BULLETIN OF SYMBOLIC LOGIC, 2003, 9 (01) : 26 - 36