Embedding of countable orders in Turing degrees

被引:0
|
作者
Ishmukhametov, ST [1 ]
机构
[1] Ulyanovsk State Univ, Ulyanovsk, Russia
基金
俄罗斯基础研究基金会;
关键词
recursive function; Turing degrees; embedding method; ordering; lattice;
D O I
10.1023/A:1021400820931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In their classical papers, Lerman, Lachlan, and Lebeuf developed the embedding method, which provides constructions of initial segments of Turing degrees isomorphic to various partially ordered structures. We analyze this method and prove that there is a nonzero degree below each decreasing chain of degrees uniform in 0'. This imposes restrictions on the application of the embedding method.
引用
收藏
页码:631 / 635
页数:5
相关论文
共 50 条
  • [31] Randomness, relativization and turing degrees
    Nies, A
    Stephan, F
    Terwijn, SA
    JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (02) : 515 - 535
  • [32] Turing degrees of multidimensional SFTs
    Jeandel, Emmanuel
    Vanier, Pascal
    THEORETICAL COMPUTER SCIENCE, 2013, 505 : 81 - 92
  • [33] The strength of compactness for countable complete linear orders
    Shafer, Paul
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2020, 9 (01): : 25 - 36
  • [34] SPHERICAL ORDERS, PROPERTIES AND COUNTABLE SPECTRA OF THEIR THEORIES
    Kulpeshov, B. Sh.
    Sudoplatov, S. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 588 - 599
  • [35] Posets of copies of countable scattered linear orders
    Kurilic, Milos S.
    ANNALS OF PURE AND APPLIED LOGIC, 2014, 165 (03) : 895 - 912
  • [36] UNIVERSAL COUNTABLE BOREL QUASI-ORDERS
    Williams, Jay
    JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (03) : 928 - 954
  • [37] COUNTABLE INITIAL SEGMENTS OF DEGREES OF UNSOLVABILITY
    LACHLAN, AH
    LEBEUF, R
    JOURNAL OF SYMBOLIC LOGIC, 1976, 41 (02) : 289 - 300
  • [38] COUNTABLE ORDINALS AND BIG RAMSEY DEGREES
    Masulovic, Dragan
    Sobot, Branislav
    COMBINATORICA, 2021, 41 (03) : 425 - 446
  • [39] Countable Ordinals and Big Ramsey Degrees
    Dragan Mašulović
    Branislav Šobot
    Combinatorica, 2021, 41 : 425 - 446
  • [40] Definability in the local structure of the ω-Turing degrees
    Ganchev, Hristo
    Sariev, Andrey C.
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2019, 29 (07) : 927 - 937