Parameter identification in noisy extended systems: A hydrodynamic case

被引:5
|
作者
Fullana, JM
Rossi, M
Zaleski, S
机构
[1] Laboratoire de Modélisation en Mécanique, CNRS URA 229, Université Pierre et Marie Curie, 75005 Paris
关键词
D O I
10.1016/S0167-2789(96)00286-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the robustness of parameter identification methods with respect to the noise levels typically found in experiments. More precisely, we fetus on the case of an extended nonlinear system: a system of coupled local maps akin to a discretized complex Ginzburg-Landau equation, modeling a wake experiment. After a brief description of this hydrodynamic experiment as well as of the associated cost function and synthetic data generation, we introduce two inversion methods: a one-time-step approach, and a more sophisticated n-time-step optimization procedure, solved by a backpropagation method. The one-time-step approach reduces to a small linear system for the unknown parameters, while the n-time-step approach involves a backpropagation equation for a set of Lagrange multipliers. The sensitivity of each method with respect to noise is then discussed. while the n-time-step method is very robust even with large amounts of noise, the one-time-step approach is shown to be affected by small noise levels.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 50 条
  • [31] Hydrodynamic limit for particle systems with nonconstant speed parameter
    Paul Covert
    Fraydoun Rezakhanlou
    Journal of Statistical Physics, 1997, 88 : 383 - 426
  • [32] Generalized Extended Stochastic Gradient Algorithm Implemented Parameter Identification for Complex Multivariable-Systems
    Wang, Wei
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 663 - 673
  • [33] Parameter identification based on prescribed estimation error performance for extended Wiener-Hammerstein systems
    Li, Linwei
    Ren, Xuemei
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (02): : 304 - 312
  • [34] On unbiased parameter estimation of linear systems using noisy measurements
    Zheng, WX
    CYBERNETICS AND SYSTEMS, 2003, 34 (01) : 59 - 70
  • [35] Extended recurrence plot and quantification for noisy continuous dynamical systems
    Wendi, Dadiyorto
    Marwan, Norbert
    CHAOS, 2018, 28 (08)
  • [36] Dynamic Parameter Identification of Hydrodynamic Bearing-Rotor System
    Song, Zhiqiang
    Liu, Yunhe
    SHOCK AND VIBRATION, 2015, 2015
  • [37] Hydrodynamic Modeling and Parameter Identification of a Bionic Underwater Vehicle: RobDact
    Cao, Qiyuan
    Wang, Rui
    Zhang, Tiandong
    Wang, Yu
    Wang, Shuo
    CYBORG AND BIONIC SYSTEMS, 2022, 2022
  • [38] THE GREEDY RANDOMIZED EXTENDED KACZMARZ ALGORITHM FOR NOISY LINEAR SYSTEMS
    Chen, Na
    Zhu, Deliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 913 - 927
  • [39] Parameter Identification of Reed-Solomon Codes over Noisy Environment
    Swaminathan, R.
    MadhuKumar, A. S.
    Wang Guohua
    Kee, Ting Shang
    2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [40] PARAMETER-IDENTIFICATION FOR NOISY IMAGE VIA THE EM-ALGORITHM
    KATAYAMA, T
    HIRAI, T
    SIGNAL PROCESSING, 1990, 20 (01) : 15 - 24