Parameter identification in noisy extended systems: A hydrodynamic case

被引:5
|
作者
Fullana, JM
Rossi, M
Zaleski, S
机构
[1] Laboratoire de Modélisation en Mécanique, CNRS URA 229, Université Pierre et Marie Curie, 75005 Paris
关键词
D O I
10.1016/S0167-2789(96)00286-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the robustness of parameter identification methods with respect to the noise levels typically found in experiments. More precisely, we fetus on the case of an extended nonlinear system: a system of coupled local maps akin to a discretized complex Ginzburg-Landau equation, modeling a wake experiment. After a brief description of this hydrodynamic experiment as well as of the associated cost function and synthetic data generation, we introduce two inversion methods: a one-time-step approach, and a more sophisticated n-time-step optimization procedure, solved by a backpropagation method. The one-time-step approach reduces to a small linear system for the unknown parameters, while the n-time-step approach involves a backpropagation equation for a set of Lagrange multipliers. The sensitivity of each method with respect to noise is then discussed. while the n-time-step method is very robust even with large amounts of noise, the one-time-step approach is shown to be affected by small noise levels.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 50 条
  • [22] Direct parameter identification of distributed parameter systems
    Coca, D
    Billings, SA
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 11 - 17
  • [23] PARAMETER IDENTIFICATION IN LINEAR DISTRIBUTED PARAMETER SYSTEMS
    BHAGAVAN, BK
    NARDIZZI, LR
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (06) : 677 - 679
  • [24] A blind identification technique for noisy ARMA systems
    Fattah, S. A.
    Zhu, W. -P.
    Ahmad, M.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 5547 - +
  • [25] Identification of Continuous-Time Linear Parameter Varying Systems With Noisy Scheduling Variable Using Local Regression
    Padilla, Arturo
    Garnier, Hugues
    Yuz, Juan I.
    Chen, Fengwei
    Poblete, Carlos Munoz
    IEEE ACCESS, 2024, 12 : 34235 - 34246
  • [26] Hydrodynamic limit for particle systems with nonconstant speed parameter
    Covert, P
    Rezakhanlou, F
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) : 383 - 426
  • [27] Hydrodynamic Limit for Particle Systems With Nonconstant Speed Parameter
    Covert, P.
    Rezakhanlou, F.
    Journal of Statistical Physics, 88 (1-2):
  • [28] Parameter identification of dynamical systems
    Rao, VH
    Yadaiah, N
    CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1137 - 1151
  • [29] UNEXPECTED RESULTS OF EXTENDED FRACTIONAL KALMAN FILTER FOR PARAMETER IDENTIFICATION IN FRACTIONAL ORDER CHAOTIC SYSTEMS
    Sun, Guanghui
    Wang, Mao
    Wu, Ligang
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (09): : 5341 - 5352
  • [30] Spectrum of the non-Markov parameter for hydrodynamic systems
    Khusnutdinov, NR
    Yulmetyev, RM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 105 (02) : 1426 - 1441