Parameter identification in noisy extended systems: A hydrodynamic case

被引:5
|
作者
Fullana, JM
Rossi, M
Zaleski, S
机构
[1] Laboratoire de Modélisation en Mécanique, CNRS URA 229, Université Pierre et Marie Curie, 75005 Paris
关键词
D O I
10.1016/S0167-2789(96)00286-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the robustness of parameter identification methods with respect to the noise levels typically found in experiments. More precisely, we fetus on the case of an extended nonlinear system: a system of coupled local maps akin to a discretized complex Ginzburg-Landau equation, modeling a wake experiment. After a brief description of this hydrodynamic experiment as well as of the associated cost function and synthetic data generation, we introduce two inversion methods: a one-time-step approach, and a more sophisticated n-time-step optimization procedure, solved by a backpropagation method. The one-time-step approach reduces to a small linear system for the unknown parameters, while the n-time-step approach involves a backpropagation equation for a set of Lagrange multipliers. The sensitivity of each method with respect to noise is then discussed. while the n-time-step method is very robust even with large amounts of noise, the one-time-step approach is shown to be affected by small noise levels.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 50 条
  • [1] On identification of parameter of scalar autoregressiveprocess with noisy parameter
    Vorobeychikov, S. E.
    Kabanova, T., V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2009, 9 (04): : 26 - 31
  • [2] Recursive parameter identification of a class of nonlinear systems from noisy measurements
    Moustafa, KAF
    Emara-Shabaik, HE
    JOURNAL OF VIBRATION AND CONTROL, 2000, 6 (01) : 49 - 60
  • [3] Fault detection and identification in dynamic systems with noisy data and parameter/modeling uncertainties
    Dinca, Laurian
    Aldemir, Tunc
    Rizzoni, Giorgio
    Reliability Engineering and System Safety, 1999, 65 (01): : 17 - 28
  • [4] Fault detection and identification in dynamic systems with noisy data and parameter modeling uncertainties
    Dinca, L
    Aldemir, T
    Rizzoni, G
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 1999, 65 (01) : 17 - 28
  • [5] Identification of noisy dynamical systems with parameter estimation based on Hopfield neural networks
    Atencia, Miguel
    Joya, Gonzalo
    Sandoval, Francisco
    NEUROCOMPUTING, 2013, 121 : 14 - 24
  • [6] IDENTIFICATION OF NOISY DISTRIBUTED PARAMETER-SYSTEMS USING STOCHASTIC-APPROXIMATION
    KUBRUSLY, CS
    CURTAIN, RF
    INTERNATIONAL JOURNAL OF CONTROL, 1977, 25 (03) : 441 - 455
  • [7] Multiscale optimization for aquifer parameter identification with noisy data
    Gomez, S
    Perez, A
    Alvarez, RM
    COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 353 - 360
  • [8] Parameter identification of a discretized biased noisy sinusoidal signal
    Luviano-Juarez, Alberto
    Cortes-Romero, John
    Sira-Ramirez, Hebertt
    MEASUREMENT, 2015, 60 : 129 - 138
  • [9] Identification of determinism in noisy neuronal systems
    Slutzky, MW
    Cvitanovic, P
    Mogul, DJ
    JOURNAL OF NEUROSCIENCE METHODS, 2002, 118 (02) : 153 - 161
  • [10] IDENTIFICATION OF DYNAMIC-SYSTEMS FROM NOISY DATA - SINGLE FACTOR CASE
    ANDERSON, BDO
    DEISTLER, M
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1993, 6 (01) : 10 - 29