General orthonormal bases for robust identification in H∞

被引:0
|
作者
Akçay, H [1 ]
机构
[1] Anadolu Univ, Dept Elect & Elect Engn, TR-26470 Eskisehir, Turkey
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of system identification in H-infinity with general orthonormal basis functions is investigated. A two-stage algorithm is shown to be robust, provided that the number of basis elements as a function of the amount of data does not increase faster than O(N-2/5). Worst-case identification error bounds in the H-infinity norm are derived. The algorithm also works on nonuniformly spaced frequency response measurements.
引用
收藏
页码:2619 / 2624
页数:6
相关论文
共 50 条
  • [21] Orthonormal bases for α-modulation spaces
    Morten Nielsen
    [J]. Collectanea mathematica, 2010, 61 : 173 - 190
  • [22] A note on Gabor orthonormal bases
    Li, YZ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2419 - 2428
  • [23] PERIODIC SPLINE ORTHONORMAL BASES
    KAMADA, M
    TORAICHI, K
    MORI, R
    [J]. JOURNAL OF APPROXIMATION THEORY, 1988, 55 (01) : 27 - 34
  • [24] A new approach for nonlinear process identification using orthonormal bases and ordinal splines
    MacArthur, J. Ward
    [J]. JOURNAL OF PROCESS CONTROL, 2012, 22 (02) : 375 - 389
  • [25] Identification of PEM Fuel Cells based on Support Vector Regression and Orthonormal Bases
    Feroldi, Diego
    Gomez, Juan C.
    Roda, Vicente
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2016, : 173 - 178
  • [26] Subspace Identification of Continuous-Time Models Using Generalized Orthonormal Bases
    Yu, Chengpu
    Chen, Jie
    Ljung, Lennart
    Verhaegen, Michel
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [27] Orthonormal spline systems on a"e with zero means as bases in H 1(a"e)
    Keryan, K.
    [J]. ANALYSIS MATHEMATICA, 2017, 43 (04) : 581 - 601
  • [28] A class of quaternionic Fourier orthonormal bases
    Li, Yun-Zhang
    Zhang, Xiao-Li
    [J]. FORUM MATHEMATICUM, 2024, 36 (03) : 825 - 834
  • [29] The use of orthonormal bases in equalization structures
    Araujo, RR
    Favier, G
    Mota, JCM
    Cavalcante, CC
    [J]. 2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005, : 400 - 404
  • [30] ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS
    DAUBECHIES, I
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) : 909 - 996