Orthonormal spline systems on a"e with zero means as bases in H 1(a"e)

被引:0
|
作者
Keryan, K. [1 ,2 ]
机构
[1] Yerevan State Univ, Alex Manoogian 1, Yerevan 0025, Armenia
[2] Amer Univ Armenia, Marshal Baghramyan 40, Yerevan 0019, Armenia
关键词
orthonormal spline system; basis; H-1(R); GENERAL FRANKLIN SYSTEMS; L-INFINITY-NORM; UNCONDITIONAL BASIS; PROJECTIONS; SPACES; PROOF;
D O I
10.1007/s10476-017-0504-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order r with zero means is a basis in the Hardy space H (1)(a"e).
引用
下载
收藏
页码:581 / 601
页数:21
相关论文
共 50 条
  • [1] Orthonormal spline systems on ℝ with zero means as bases in H1(ℝ)
    K. Keryan
    Analysis Mathematica, 2017, 43 : 581 - 601
  • [2] Periodic Orthonormal Spline Systems with Arbitrary Knots as Bases in H1(T)
    Hakobyan, L.
    Keryan, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (01): : 33 - 42
  • [3] Unconditionality of Periodic Orthonormal Spline Systems in H1(T): Necessity
    Hakobyan, L.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (04): : 245 - 261
  • [4] Unconditionality of Periodic Orthonormal Spline Systems in H1 (T): Sufficiency
    Hakobyan, L.
    Keryan, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (03): : 163 - 186
  • [5] Construction of nonseparable orthonormal compactly supported wavelet bases for L 2(a"e d )
    Yang Shou-zhi
    Lin Jun-hong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (02) : 205 - 224
  • [6] THE PROCESSES E(+)E(-)-]W(+/-)H(-/+) AND E(+)E(-)-]H(+)H(-) IN SUPERSTRING INSPIRED EXTRA U(1) MODEL
    BHATIA, U
    SHARMA, NK
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (03): : 501 - 514
  • [7] A h/e-determination by means of electron diffraction
    von Meibom, R
    Rupp, E
    ANNALEN DER PHYSIK, 1932, 13 (06) : 725 - 731
  • [8] Unconditionality of orthogonal spline systems in H1
    Gevorkyan, Gegham
    Kamont, Anna
    Keryan, Karen
    Passenbrunner, Markus
    STUDIA MATHEMATICA, 2015, 226 (02) : 123 - 154
  • [9] FORTRAN ROUTINES FOR DISCRETE CUBIC SPLINE INTERPOLATION AND SMOOTHING [E1], [E3]
    DURIS, CS
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (01): : 92 - 103
  • [10] CPV in e+e-H at 1 TeV ILC
    Vukasinovic, N.
    Agatonovic-Jovin, T.
    Bozovic-Jelisavcic, I
    Kacarevic, G.
    Milutinovic-Dumbelovic, G.
    Smiljanic, I
    Radulovic, M.
    Stevanovic, J.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2022, 77 (02) : 268 - 269